

Faculty of Computer Science & Applications Bachelor of Computer Application with Industry Collaboration (W. E. F.: 2023-24) Document ID: SUTEFCAB-01

Name of Faculty	:	Faculty of Computer Science & Applications
Name of Program	•••	Bachelor of Computer Application with Industry Collaboration
Course Code	••	1BCA04
Course Title	:	Introduction to Digital Logic Fundamentals
Type of Course	:	Professional Core
Year of Introduction	:	2023-24

Prerequisite	:	-	
Course Objective	:	This program empowers students to enhance their proficiency	
		in Microsoft Office, acquire knowledge on the proper utilization	
		of Google Apps and understand the importance of computer	
		security.	
Course Outcomes	:	At the end of this course, students will be able to:	
	CO 1	Understand Number System & Perform number conversions.	
	CO 2	Identify the logic gates and their functionality.	
	CO 3	Perform number conversions from one system to another	
		system	
	CO 4	Design basic electronic circuits (combinational circuits).	
	CO 5	Perform a comparative analysis of the components of different	
		memory units.	

Teaching and Examination Scheme

Teaching Scheme (Contact		Credits	Examination Marks					
	Hours)		Cieuns	Theory Marks		larks Practical Marks		Total
L	Т	Р	С	SEE	CIA	SEE	CIA	Marks
2	0	0	2	50	25	0	0	75

Legends: L-Lecture; T-Tutorial/Teacher Guided Theory Practice; P – Practical, C – Credit, SEE – Semester End Examination, CIA - Continuous Internal Assessment (It consists of Assignments/Seminars /Presentations/MCQ Tests, etc.))

Course Content

Unit No.	Topics	Teaching Hours	Weightage	Mapping with CO
1	NUMBER SYSTEM AND CONVERSION Decimal Numbers, Binary Numbers, Hexadecimal Numbers, Octal Numbers, Conversions within Number systems	5	15%	CO 1 CO 3
2	ARITHMETICS AND CODES: Binary Arithmetic, l's and 2's complements of Binary Numbers, Signed Numbers, Arithmetic Operations with Signed numbers, Digital Codes, Error Detection Codes.	7	10%	CO 3

Faculty of Computer Science & Applications Bachelor of Computer Application with Industry Collaboration (W. E. F.: 2023-24) Document ID: SUTEFCAB-01

3	LOGIC GATES: The Inverter, The AND gate, The OR gate, The NAND gate, NOR gate, The Exclusive-OR gate and Exclusive-NOR gate; Boolean Algebra and Logic Simplification – Boolean Operations and Expressions, Laws and Rules, De-Morgan's Theorems, Boolean Expressions and Truth Tables,	6	20%	CO 2
4	The Karnaugh Map, SOP minimizations. COMBINATIONAL LOGIC ANALYSIS: Basic combinational Logic Circuits, Implementing Combinational Logic, The Universal Property of NAND and NOR Gates. Functions of Combinational Logic - Basic Adder, Parallel Binary Adders, Comparators, Decoders, Encoders, Code Converters, Multiplexers, Parity Generator/Checkers.	8	20%	CO 2 CO 4
5	LATCHES AND FLIP-FLOPS: Latches, Edge Triggered Flip-Flops, Flip-Flop Operating characteristics, Flip-Flop Applications, Registers, Counters.	8	20%	CO 3
6	Memory Basics, The RAM, The ROM, Programmable ROMs, The Flash Memory, Memory Expansion, Special Types of Memories, Magnetic and Optical Storage.	6	15%	CO 4 CO 5

Suggested Distribution of Theory Marks Using Bloom's Taxonomy						
Level	Remembrance	Understanding	Application	Analyse	Evaluate	Create
Weightage	40	30	30	-	-	-

NOTE: This specification table shall be treated as a general guideline for the students and the teachers. The actual distribution of marks in the question paper may vary slightly from above table.

Suggested List of Experiments/Tutorials

Sr. No.	Name of Experiment/Tutorial	Teaching Hours
1	To study and verify the truth table of logic gates: Identify various ICs and their specification.	4
	a. OR gate b. AND gate c. NAND gate d. NOR gate	
2	Realization of a Boolean function: To simplify the given expression and to realize it using Basic gates and Universal gate	4
3	Design and implementation using NAND gate: To realize why NAND gate is known as the universal gate by implementation of: a. NOT using NAND b. AND using NAND c. OR using NAND d. XOR using NAND	4
4	Adders and Subtractors: To realize a . Half Adder and Full Adder b . Half Subtractor and Full Subtractor by using Basic gates and NAND gates	2
5	Binary to grey generator: To learn the importance of weighted and non weighted code To learn to generate gray code	2

Faculty of Computer Science & Applications Bachelor of Computer Application with Industry Collaboration (W. E. F.: 2023-24) Document ID: SUTEFCAB-01

6	 Multiplexer and Demultiplexer: a. To design and set up a 4:1 Multiplexer (MUX) using only NAND gates. b. To design and set up a 1:4 Demultiplexer (DE-MUX) using only NAND gates. 	4
7	Realization of a Boolean function using Logisim Software: To learn the use of Logisim software to design digital electronics circuits.	4
8	 Flipflop: a. Truth Table verification of 1) RS Flip Flop 2) T type Flip Flop. 3) D type Flip Flop. 4) JK Flip Flop. b. Conversion of one type of Flip flop to another 	4

Major Equipment/ Instruments and Software Required

Sr. No.	Name of Major Equipment/ Instruments and Software
1	IC trainer kit, Logic gate ICs, Patch chords, connecting wires.
2	Logisim Software

Suggested Learning Websites

Sr. No.	Name of Website
1	https:// <u>learn.sparkfun.com</u>
2	https://www.geeksforgeeks.org/

Reference Books

Sr. No.	Name of Reference Books
1	Floyd, Thomas L, "Digital Computer Fundamentals", 10 th Edition, University Book Stall, 1997.
2	Malvino, Paul Albert and Leach, Donald P, "Digital Principles and Applications", 4th Edition, TMH, 2000.
3	Malvino, Paul Albert and Leach, Donald P, "Digital Computer Fundamentals", 3rd Edition, TMH, 1995.
4	Bartee, Thomas C, "Digital Computer Fundamentals", 6th Edition, TMH, 1995.