

### Faculty of Computer Science & Applications Master of Computer Application with Cyber Security (W. E. F.: 2023-24) Document ID: SUTEFCAM-01

| Name of Faculty      | : | Faculty of Computer Science & Applications         |
|----------------------|---|----------------------------------------------------|
| Name of Program      | : | Master of Computer Application with Cyber Security |
| Course Code          | : | 1MCA04                                             |
| Course Title         | : | Database Management System                         |
| Type of Course       | : | Professional core                                  |
| Year of Introduction | : | 2023-24                                            |

| Prerequisite     | :   | Maths, logic and most importantly zeal to learn                    |  |  |  |
|------------------|-----|--------------------------------------------------------------------|--|--|--|
| Course Objective | 1   | To learn the fundamentals of data models and to represent a        |  |  |  |
|                  |     | database system using ER diagrams.                                 |  |  |  |
|                  | 2   | To understand the internal storage structures using different file |  |  |  |
|                  |     | and indexing techniques which will help in physical DB design.     |  |  |  |
|                  | 3   | To understand the fundamental concepts of transaction              |  |  |  |
|                  |     | processing- concurrency control techniques and recovery            |  |  |  |
|                  |     | procedures.                                                        |  |  |  |
|                  | 4   | To have an introductory knowledge about the Storage and Query      |  |  |  |
|                  |     | processing Techniques.                                             |  |  |  |
|                  | 5   | To study SQL and relational database design.                       |  |  |  |
| Course Outcomes  | :   | After learning the course the students will be able to:            |  |  |  |
|                  | CO1 | Describe the fundamental elements of relational database           |  |  |  |
|                  |     | management systems                                                 |  |  |  |
|                  | CO2 | Demonstrate the understanding of database design using             |  |  |  |
|                  |     | normalization.                                                     |  |  |  |
|                  | CO3 | Analyze and Select storage and recovery techniques of database     |  |  |  |
|                  |     | system.                                                            |  |  |  |

#### **Teaching and Examination Scheme**

| Teaching Scheme (Contact Credits Examination Marks |        |   |   |                              |     |       |     |       |
|----------------------------------------------------|--------|---|---|------------------------------|-----|-------|-----|-------|
|                                                    | Hours) |   |   | Theory Marks Practical Marks |     | Total |     |       |
| L                                                  | Т      | Р | С | SEE                          | CIA | SEE   | CIA | Marks |
| 2                                                  | 0      | 2 | 3 | 70                           | 30  | 30    | 20  | 150   |

Legends: L-Lecture; T-Tutorial/Teacher Guided Theory Practice; P- Practical, C - Credit, SEE - Semester End Examination, CIA - Continuous Internal Assessment (It consists of Assignments/Seminars/Presentations /MCQ Tests, etc.))



## **Faculty of Computer Science & Applications** Master of Computer Application with Cyber Security (W. E. F.: 2023-24)

Document ID: SUTEFCAM-01

| Unit<br>No. | Topics                                                                                                                                                                                                                                                                                                                                                                               | Teaching<br>Hours | Weightage | Mapping<br>with CO |
|-------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|-----------|--------------------|
| 1           | <b>Introduction:</b> Database, Data models, Database<br>management system, Schemas and instances,<br>Three-schema architecture of DBMS, Components<br>of DBMS. Data independence, Functions of DBA,<br>ER model- E-R diagram, Weak Entity sets,<br>Generalization, Specialization, Aggregation                                                                                       | 07                | 20%       | CO1                |
| 2           | Relational Model: Structure of relation database-<br>Domains, Relations, Keys, Key attributes,<br>Referential integrity, Intension and Extension.<br>SQL Query & Relational Algebra : Basics of SQL,<br>DDL, DML, DCL, structurecreation, alteration,<br>defining constraints, Data extraction from tables,<br>Joins, Complex queries, Relational Algebra and<br>Relational Calculus | 08                | 20%       | CO3                |
| 3           | RelationalDatabaseDesign:FunctionalDependency , Normalization- Introduction, 1NF,2NF, 3NF, Decomposition, DependencyPreservation , BCNF, Mutivalued Dependency,4NF, Join Dependency and 5NFQuery Processing:Query Processing:Query Optimization, OperatorEvaluation, Query Optimization, OptimizationMethods- Heuristic Based, Cost Estimation based,Semantic Query Optimization     | 07                | 20%       | O2                 |
| 4           | <b>Transaction Management</b> : Transaction concepts,<br>ACID properties, Transaction systems, Testing of<br>Serilizability, Serializability of schedules, conflict<br>& view serializable schedule, recoverability,<br>Concurrency Control Technique-Concurrency<br>Control, locking Techniques for concurrency<br>control                                                          | 07                | 20%       | CO3                |
| 5           | <b>Storage &amp; Data Security:</b> Storage structure, file<br>organization, Recovery and atomicity,<br>Performance measures of discs, RAID levels,<br>Indices, B+ Tree, Hashing, Bitmap indices, Query<br>optimizations , Database Security, Data mining<br>models and techniques, Distributed Databases,<br>GIS.                                                                   | 07                | 20%       | CO3                |

| Suggested Distribution of Theory Marks Using Bloom's Taxonomy |             |               |             |         |          |        |
|---------------------------------------------------------------|-------------|---------------|-------------|---------|----------|--------|
| Level                                                         | Remembrance | Understanding | Application | Analyse | Evaluate | Create |
| Weightage                                                     | 20          | 30            | 30          | 20      | 0        | 0      |

NOTE: This specification table shall be treated as a general guideline for the students and the teachers. The actual distribution of marks in the question paper may vary slightly from above table.

### Suggested List of Experiments/Tutorials



# Faculty of Computer Science & Applications Master of Computer Application with Cyber Security (W. E. F.: 2023-24)

Document ID: SUTEFCAM-01

| Sr. No. | Name of Experiment/Tutorial                                                                            | Teaching<br>Hours |
|---------|--------------------------------------------------------------------------------------------------------|-------------------|
| 1       | Creation of a database and writing SQL queries to retrieve iformation from the database                | 01                |
| 2       | Performing Insertion, Deletion, Modifying, Altering, Updating and Viewing records based on conditions. | 01                |
| 3       | Creation of Views, Synonyms, Sequence, Indexes, Save point.                                            | 02                |
| 4       | Creating an Employee database to set various constraints.                                              | 01                |
| 5       | Creating relationship between the databases.                                                           | 02                |
| 6       | Study of PL/SQL block.                                                                                 | 01                |
| 7       | Write a PL/SQL block to satisfy some conditions by accepting input from the user.                      | 01                |
| 8       | Write a PL/SQL block that handles all types of exceptions.                                             | 01                |
| 9       | Creation of Procedures.                                                                                | 01                |
| 10      | Creation of database triggers and functions.                                                           | 01                |

### Major Equipment/ Instruments and Software Required

| Sr. No. | Name of Major Equipment/ Instruments and Software |
|---------|---------------------------------------------------|
| 1       | VB, ORACLE and/or DB2                             |
| 2       | CB, MY SQL SERVER 2000                            |

### **Suggested Learning Websites**

| Sr. No. | Name of Website                                                                          |
|---------|------------------------------------------------------------------------------------------|
| 1       | https://www.geeksforgeeks.org/introduction-of-dbms-database-management-system-<br>set-1/ |
| 2       | https://www.guru99.com/what-is-dbms.html                                                 |
| 3       | https://www.javatpoint.com/dbms-tutorial                                                 |

#### **Reference Books**

| Sr. No. | Name of Reference Books                                                                                               |
|---------|-----------------------------------------------------------------------------------------------------------------------|
| 1       | Ramez Elmasri, Shamkant B. Navathe, Fundamentals of Database Systems, 4 th ed., US, Pearson/Addision Wesley, 2003.    |
| 2       | Hector Garcia-Molina, Jeff Ullman, and Jennifer Widom, Database Systems: The<br>Complete Book, 2nd ed., Pearson, 2008 |
| 3       | Raghu Ramakrishnan, Database Management Systems, 3rd ed. New Delhi, McGraw Hill, 2014.                                |