

Faculty of Computer Science & Applications Master of Computer Application with Cyber Security (W. E. F.: 2023-24) Document ID: SUTEFCAM-01

Name of Faculty	:	Faculty of Computer Science & Applications
Name of Program	:	Master of Computer Application with Cyber Security
Course Code	:	2MCA01
Course Title	:	Design and Analysis of Algorithms
Type of Course	:	Professional Couse
Year of Introduction	:	2023-24

Prerequisite	:	Programming (C or C++), Data and file structure			
Course Objective	:	Obtaining efficient algorithms is very important in modern			
		computer engineering as the world wants applications to be			
		time and space and energy efficient. This course enables to			
		understand and analyse efficient algorithms for various			
		applications.			
Course Outcomes	:	At the end of this course, students will be able to:			
	CO 1	Analyze the asymptotic performance of algorithms.			
	CO 2	Derive and solve recurrences describing the performance of			
		divide-and-conquer algorithms.			
	CO 3	Find optimal solution by applying various methods.			
	CO 4	Apply pattern matching algorithms to find particular pattern.			
	CO 5	Differentiate polynomial and nonpolynomial problems			
	CO 6	Explain the major graph algorithms and their analyses. Employ			
		graphs to model engineering problems, when appropriate.			

Teaching and Examination Scheme

Teachin	g Scheme	(Contact	Credits	Examination Marks				
	Hours)			Theory Marks Practical Marks		Total		
L	Т	Р	С	SEE	CIA	SEE	CIA	Marks
2	0	2	3	70	30	30	20	150

Legends: L-Lecture; T-Tutorial/Teacher Guided Theory Practice; P-Practical, C – Credit, SEE – Semester End Examination, CIA - Continuous Internal Assessment (It consists of Assignments/Seminars/Presentations/MCQ Tests, etc.))

Course Content

Unit No,	Topics	Teaching Hrs.	Weightage	Mapping with CO
1	Basics of Algorithms and Mathematics: What is an algorithm?, Mathematics for Algorithmic Sets, Functions and Relations, Vectors and Matrices, Linear Inequalities and Linear Equations.		2%	CO1

Faculty of Computer Science & Applications Master of Computer Application with Cyber Security (W. E. F.: 2023-24)

Document ID: SUTEFCAM-01

			[ı
	Analysis of Algorithm: The efficient			
	algorithm, Average, Best and worst case			
	analysis, Amortized analysis , Asymptotic			
	Notations, Analyzing control statement, Loop			
2	invariant and the correctness of the	05	10%	CO1
	algorithm, Sorting Algorithms and analysis:			
	Bubble sort, Selection sort, Insertion sort, Shell			
	sort Heap sort, Sorting in linear time : Bucket			
	sort, Radix sort and Counting sort			
	Divide and Conquer Algorithm: Introduction,			
	Recurrence and different methods to solve			
	recurrence, Multiplying large Integers			
3	Problem, Problem Solving using divide and	04	15%	CO2
5	conquer algorithm - Binary Search, Max-Min	04	1370	02
	1 0 1			
	problem, Sorting (Merge Sort, Quick Sort),			
	Matrix Multiplication, Exponential.			
	Dynamic Programming: Introduction, The			
	Principle of Optimality, Problem Solving			
	using Dynamic Programming - Calculating			
4	the Binomial Coefficient, Making Change	04	20%	CO2
т	Problem, Assembly Line-Scheduling,	04	2070	002
	Knapsack problem, All Points Shortest path,			
	Matrix chain multiplication, Longest Common			
	Subsequence.			
	Greedy Algorithm: General Characteristics			
	of greedy algorithms, Problem solving			
	using Greedy Algorithm			
	Activity selection problem, Elements of			
5	Greedy Strategy, Minimum Spanning trees	03	20%	CO2
Ū	(Kruskal's algorithm, Prim's algorithm),		_0,0	CO3
	Graphs: Shortest paths, The Knapsack			
	Problem, Job Scheduling Problem, Huffman			
	code.			
	Exploring Graphs: An introduction using			
	graphs and games, Undirected Graph,	02	100/	CO3
6	Directed Graph, Traversing Graphs, Depth	03	10%	CO4
	First Search, Breath First Search, Topological			
	sort, Connected components,			
	Backtracking and Branch and Bound:			
7	Introduction, The Eight queens problem ,	03	5%	CO5
,	Knapsack problem, Travelling Salesman	00	570	
	problem, Minimax principle			
	String Matching: Introduction, The naive			
0	string matching algorithm, The Rabin-Karp	0.2	00/	CO-
~ ~	algorithm, String Matching with finite	03	8%	CO5
	automata, The Knuth-Morris-Pratt algorithm.			
		l		

Faculty of Computer Science & Applications Master of Computer Application with Cyber Security (W. E. F.: 2023-24)

Document ID: SUTEFCAM-01

	Introduction to NP-Completeness: The class			
	P and NP, Polynomial reduction, NP-			
9	Completeness Problem, NP-Hard Problems.	03	10%	CO6
	Travelling Salesman problem, Hamiltonian			
	problem, Approximation algorithms			

Suggested Distribution of Theory Marks Using Bloom's Taxonomy						
Level	evelRemembranceUnderstandingApplicationAnalyseEvaluateCreate					
Weightage	40%	40%	20%	-	-	-

NOTE: This specification table shall be treated as a general guideline for the students and the teachers. The actual distribution of marks in the question paper may vary slightly from above table.

Suggested List of Experiments/Tutorials

Sr. No.	Name of Experiment/Tutorials	
1.	Implementation and Time analysis of sorting algorithms. Bubble sort, Selection sort, Insertion sort, Merge sort and Quicksort	02
2.	Implementation and Time analysis of linear and binary search algorithm.	02
3.	Implementation of max-heap sort algorithm	02
4.	Implementation and Time analysis of factorial program using iterative and recursive method	02
5.	Implementation of a knapsack problem using dynamic programming.	02
6.	Implementation of chain matrix multiplication using dynamic programming.	02
7.	Implementation of making a change problem using dynamic programming	02
8.	Implementation of a knapsack problem using greedy algorithm	02
9.	Implementation of Graph and Searching (DFS and BFS).	02
10.	Implement prim's algorithm	02
11.	Implement kruskal's algorithm.	02
12.	Implement LCS problem.	02
13.	Implementation and Time analysis of sorting algorithms. Bubble sort, Selection sort, Insertion sort, Merge sort and Quicksort	02
14.	Implementation and Time analysis of linear and binary search algorithm.	02
15.	Implementation of max-heap sort algorithm	02

Major Equipment/ Instruments and Software Required

Sr. No.	Name of Major Equipment/ Instruments and Software
1	TURBO C++ or Any other C IDE

Faculty of Computer Science & Applications Master of Computer Application with Cyber Security (W. E. F.: 2023-24) Document ID: SUTEFCAM-01

Reference Books

Sr. No.	Name of Reference Books	
1	Introduction to Algorithms, Thomas H. Cormen, Charles E. Leiserson, Ronald L.	
1	Rivest and Clifford Stein, PHI.	
2	Fundamental of Algorithms by Gills Brassard, Paul Bratley, PHI.	
3	Introduction to Design and Analysis of Algorithms, Anany Levitin, Pearson.	
4	Foundations of Algorithms, Shailesh R Sathe, Penram	
5	Design and Analysis of Algorithms, Dave and Dave, Pearson.	