

Faculty of Computer Science & Applications Master of Computer Application with Cyber Security (W. E. F.: 2023-24)

Document ID: SUTEFCAM-01

Name of Faculty	:	Faculty of Computer Science & Applications
Name of Program	:	Master of Computer Application with Cyber Security
Course Code	:	2MCY03
Course Title	:	Computer Cryptography & Network Security
Type of Course	:	Professional core
Year of Introduction	:	2023-24

Prerequisite	:	Programming Languages, statistics and mathematics, Graph and
		most importantly zeal to learn
Course Objective	1	To understand basics of Cryptography and Network Security.
	2	To be able to secure a message over insecure channel by various
		means.
	3	To learn about how to maintain the Confidentiality.
	4	To understand various protocols for network security to protect
		against the threats in the networks
Course Outcomes	:	After learning the course the students will be able to:
	CO1	Provide security of the data over the network.
	CO2	Do research in the emerging areas of cryptography and network
		security.
	CO3	Implement various networking protocols.
	CO4	Protect any network from the threats in the world.

Teaching and Examination Scheme

Teaching Scheme (Contact Credit			Credits		Exar	nination M	arks	
	Hours)			Theory Marks Practical Marks		Total		
L	T	P	С	SEE	CIA	SEE	CIA	Marks
2	0	2	3	70	30	30	20	150

Legends: L-Lecture; T-Tutorial/Teacher Guided Theory Practice; P- Practical, C - Credit, SEE - Semester End Examination, CIA - Continuous Internal Assessment (It consists of Assignments/Seminars/Presentations/MCQ Tests, etc.))

Course Content

Unit No.	Topics	Teaching Hours	Weightage	Mapping with CO
1	Introduction to Cryptography and Block Ciphers: Introduction to security attacks - services and mechanism - introduction to cryptography - Conventional Encryption: Conventional encryption model - classical encryption techniques - substitution ciphers and transposition ciphers - cryptanalysis - steganography - stream and block ciphers - Modern Block Ciphers: Block ciphers principals - Shannon's theory of confusion and diffusion - fiestal structure - data encryption standard(DES) - strength of DES - differential and linearcrypt analysis of DES - block cipher modes of operations - triple DES - AES.	07	20%	CO1

Document Version: 1.0 Page 1 of 3

Faculty of Computer Science & Applications Master of Computer Application with Cyber Security (W. E. F.: 2023-24)

Document ID: SUTEFCAM-01

2	Confidentiality and Modular Arithmetic: Confidentiality using conventional encryption - traffic confidentiality - key distribution - random number generation - Introduction to graph - ring and field - prime and relative prime numbers - modular arithmetic - Fermat's and Euler's theorem - primality testing - Euclid's Algorithm - Chinese Remainder theorem - discrete algorithms.	07	20%	CO2
3	Public key cryptography and Authentication requirements: Principles of public key crypto systems - RSA algorithm - security of RSA - key management - Diffle-Hellman key exchange algorithm introductory idea of Elliptic curve cryptography - Elgamel encryption - Message Authentication and Hash Function: Authentication requirements - authentication functions - message authentication code - hash functions - birthday attacks - security of hash functions and MACS.	07	20%	CO2
4	Integrity checks and Authentication algorithms: MD5 message digest algorithm - Secure hash algorithm (SHA) Digital Signatures: Digital Signatures - authentication protocols - digital signature standards (DSS) - proof of digital signature algorithm - Authentication Applications: Kerberos and X.509 - directory authentication service - electronic mail security-pretty good privacy (PGP) - S/MIME.	08	20%	CO3
5	IP Security and Key Management: IP Security: Architecture - Authentication header - Encapsulating security payloads - combining security associations - key management. Web and System Security: Web Security: Secure socket layer and transport layer security - secure electronic transaction (SET) - System Security: Intruders - Viruses and related threads - firewall design principals - trusted systems.	07	20%	CO4

Suggested Distribution of Theory Marks Using Bloom's Taxonomy						
Level	Remembrance Understanding Application Analyse Evaluate Create					
Weightage	20	30	30	20	0	0

NOTE: This specification table shall be treated as a general guideline for the students and the teachers. The actual distribution of marks in the question paper may vary slightly from above table.

Document Version: 1.0 Page 2 of 3

Faculty of Computer Science & Applications Master of Computer Application with Cyber Security (W. E. F.: 2023-24)

Document ID: SUTEFCAM-01

Suggested List of Experiments/Tutorials

Sr. No.	Name of Experiment/Tutorial	Teaching Hours
1	Write a C program that contains a string (char pointer) with a value \Hello World'. The programs should XOR each character in this string with 0 and display the result.	01
2	Write a C program that contains a string (char pointer) with a value \Hello World'. The program should AND or and XOR each character in this string with 127 and display the result.	01
3	Write a Java program to perform encryption and decryption using the following algorithms: a. Ceaser Cipher b. Substitution Cipher c. Hill Cipher	02
4	Write a Java program to implement the DES algorithm logic.	01
5	Write a C/JAVA program to implement the Blowfish algorithm logic.	01
6	Write a C/JAVA program to implement the Rijndael algorithm logic.	01
7	Write the RC4 logic in Java Using Java Cryptography, encrypt the text "Hello world" using Blowfish. Create your own key using Java key tool.	02
8	Write a Java program to implement RSA Algorithm.	01
9	Implement the Diffie-Hellman Key Exchange mechanism using HTML and JavaScript.	01
10	Calculate the message digest of a text using the SHA-1 algorithm in JAVA.	01

Major Equipment/ Instruments and Software Required

Sr. No.	Name of Major Equipment/ Instruments and Software
1	C/JAVA, Ubuntu.
2	I3/ I5 processor; 8GB RAM; 250GB HDD

Suggested Learning Websites

Sr. No.	Name of Website
1	http://nptel.ac.in/courses/106105031/lecture by Dr. Debdeep Mukhopadhyay IIT
	Kharagpur
	https://ocw.mit.edu/courses/electrical-engineering-and-computer-science/6-033-
2	computer-system-engineering-spring-2009/video-lectures/ lecture by Prof. Robert
	Morrisand Prof. Samuel Madden MIT.

Reference Books

Sr. No.	Name of Reference Books
1	W. Mao, "Modern Cryptography - Theory and Practice", Pearson Education.
2	Charles P. Pfleeger, Shari Lawrence Pfleeger - Security in computing - Prentice Hall of India.

Document Version: 1.0 Page 3 of 3