

Faculty of Computer Science & Applications Master of Computer Application in Data Science (W. E. F.: 2023-24) Document ID: SUTEFCAM-01

Name of Faculty	:	Faculty of Computer Science & Applications
Name of Program	:	Master of Computer Application in Data Science
Course Code	:	2MDS02
Course Title	:	Data Mining
Type of Course	:	Professional core
Year of Introduction	:	2023-24

Prerequisite	:	Knowledge of basic programming and statistics		
Course Objective	CO1 It presents methods for mining frequent patterns, associations, and correlations.			
	CO2	It then describes methods for data classification and prediction, and data-clustering approaches.		
	CO3	t covers mining various types of data stores such as spatial, extual, multimedia, streams		
Course Outcomes	:	Student can		
	1	Ability to understand the types of the data to be mined and		
		present a general classification of tasks and primitives to integrate		
		a data mining system.		
	2	Evaluate the accuracy of supervised and unsupervised models		
		and algorithms.		
	3	Choose and employ suitable data mining algorithms to build		
		analytical applications		
	4	Discover the role played by data mining in various fields.		
	5	Extract interesting patterns from large amounts of data.		

Teaching and Examination Scheme

Teaching Scheme (Contact Credits				Exar	nination M	arks		
	Hours)			Theory Marks		Practical Marks		Total
L	Т	Р	С	SEE	CIA	SEE	CIA	Marks
3	0	2	4	70	30	30	20	150

Legends: L-Lecture; T-Tutorial/Teacher Guided Theory Practice; P- Practical, C - Credit, SEE - Semester End Examination, CIA - Continuous Internal Assessment (It consists of Assignments/Seminars/Presentations /MCQ Tests, etc.))

Course Content

Unit No.	Topics	Teaching Hours	Weightage	Mapping with CO
1	Data Mining: Data-Types of Data-, Data Mining Functionalities- Interestingness Patterns- Classification of Data Mining systems- Data mining Task primitives - Integration of Data mining system with a Data warehouse-Major issues in Data Mining-Data Preprocessing.	07	20%	CO1

Faculty of Computer Science & Applications Master of Computer Application in Data Science (W. E. F.: 2023-24)

Document ID: SUTEFCAM-01

2	Association Rule Mining: Mining Frequent Patterns-Associations and correlations – Mining Methods– Mining Various kinds of Association Rules– Correlation Analysis– Constraint based Association mining. Graph Pattern Mining, SPM.	07	20%	CO2 CO5
3	Classification:Classification and Prediction –Basic concepts-Decision tree induction-Bayesian classification,Rule-basedclassification, Lazy learner.	07	20%	CO1 CO2
4	Clustering and Applications: Cluster analysis- Types of Data in Cluster Analysis- Categorization of Major Clustering Methods- Partitioning Methods, Hierarchical Methods- Density-Based Methods, Grid-Based Methods, Outlier Analysis.	07	20%	CO3 CO5
5	Advanced Concepts: Basic concepts in Mining data streams-Mining Time-series dataMining sequence patterns in Transactional databases- Mining Object- Spatial- Multimedia-Text and Web data - Spatial Data mining- Multimedia Data mining-Text Mining- Mining the World Wide Web.	08	20%	CO3 CO4

Suggested Distribution of Theory Marks Using Bloom's Taxonomy						
Level	Remembrance	Understanding	Application	Analyse	Evaluate	Create
Weightage	20	30	30	20	0	0
NOTE TI	· · · · · · · · · · · · · · · · · · ·	1 1	1 1 1 1 0	.1 . 1 .	1 .1 .	1

NOTE: This specification table shall be treated as a general guideline for the students and the teachers. The actual distribution of marks in the question paper may vary slightly from above table.

Sr. No.	Name of Experiment/Tutorial	Teaching Hours
1	Demonstration of preprocessing on dataset student.arff	01
2	Demonstration of preprocessing on dataset labor.arff	01
3	Demonstration of Association rule process on dataset contactlenses.arff using apriori algorithm.	01
4	Demonstration of Association rule process on dataset test.arff using apriori algorithm.	02
5	Demonstration of classification rule process on dataset student.arff using j48 Algorithm.	01
6	Demonstration of classification rule process on dataset employee.arff using j48 algorithm.	01
7	Demonstration of classification rule process on dataset employee.arff using id3 algorithm.	01
8	Demonstration of classification rule process on dataset employee.arff	01

Faculty of Computer Science & Applications Master of Computer Application in Data Science (W. E. F.: 2023-24) Document ID: SUTEFCAM-01

	using naïve bayes algorithm.	
9	Demonstration of clustering rule process on dataset iris.arff using simple k-means.	02
10	Demonstration of clustering rule process on dataset student.arff using simple kmeans.	01

Major Equipment/ Instruments and Software Required

Sr. No.	Name of Major Equipment/ Instruments and Software	
1	Anaconda	
2	I3/ I5 processor; 8GB RAM; 250GB HDD	

Suggested Learning Websites

Sr. No.	Name of Website
1	https://www.javatpoint.com/data-mining
2	https://www.geeksforgeeks.org/data-mining/

Reference Books

Sr. No.	Name of Reference Books
1	Data Mining - Concepts and Techniques - Jiawei Han & Micheline Kamber, 3rd Edition
1	Elsevier.
2	Data Mining Introductory and Advanced topics - Margaret H Dunham, PEA
3	Ian H. Witten and Eibe Frank, Data Mining: Practical Machine Learning Tools and
	Techniques (Second Edition), Morgan Kaufmann, 2005.