

## Faculty of Engineering & Technology Bachelor of Technology (B. Tech)

(W. E. F.: 2023-24)

Document ID: SUTEFETB-01

| Name of Faculty      | : | Faculty of Engineering & Technology |
|----------------------|---|-------------------------------------|
| Name of Program      | : | Bachelor of Technology (B. Tech)    |
| Course Code          | : | 1BCH01                              |
| Course Title         | : | Engineering Chemistry               |
| Type of Course       | : | Basic Science (BS)                  |
| Year of Introduction | : | 2023-24                             |

| Prerequisite     | :   | Fundamentals of Chemistry                                      |
|------------------|-----|----------------------------------------------------------------|
| Course Objective | :   | The course aims to provide students with a comprehensive       |
|                  |     | understanding of chemical kinetics, electrochemistry, organic  |
|                  |     | reaction mechanisms, spectroscopy, and nanomaterials.          |
| Course Outcomes  | :   | At the end of this course, students will be able to:           |
|                  | CO1 | Understand the basic concepts of chemical kinetics and how to  |
|                  |     | calculate reaction rates.                                      |
|                  | CO2 | Understand the basic principles of electrochemistry, including |
|                  |     | redox reactions, half-reactions, and electrode potentials.     |
|                  | CO3 | Understand the concept of reaction intermediates and how they  |
|                  |     | relate to organic reaction mechanisms.                         |
|                  | CO4 | Understand the basic principles of spectroscopy and the        |
|                  |     | applications of UV, IR, and NMR spectroscopy in chemical       |
|                  |     | analysis.                                                      |
|                  | CO5 | Understand the basic principles of nanomaterials and their     |
|                  |     | synthesis.                                                     |

#### **Teaching and Examination Scheme**

| Teachin | Teaching Scheme (Contact |   | Credits Examination Marks |              |     |                 |     |       |
|---------|--------------------------|---|---------------------------|--------------|-----|-----------------|-----|-------|
|         | Hours)                   |   |                           | Theory Marks |     | Practical Marks |     | Total |
| L       | T                        | P | С                         | SEE          | CIA | SEE             | CIA | Marks |
| 3       | 0                        | 2 | 4                         | 70           | 30  | 30              | 20  | 150   |

Legends: L-Lecture; T-Tutorial/Teacher Guided Theory Practice; P-Practical, C-Credit, SEE-Semester End Examination, CIA-Continuous Internal Assessment (It consists of Assignments/Seminars/Presentations/MCQ Tests, etc.))

#### **Course Content**

| Unit<br>No. | Topics                                                                                                                                                                                      | Teaching<br>Hours | Weightage | Mapping<br>with CO |
|-------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|-----------|--------------------|
| 1           | Chemical Kinematics and catalysis Introduction to rate equation and reaction order, reaction mechanism, relation between rate equation and reaction mechanism, Pseudo First order reaction, | 9                 | 20%       | CO1                |

Document Version: 1.0 Page 1 of 4



## Faculty of Engineering & Technology Bachelor of Technology (B. Tech)

(W. E. F.: 2023-24)

Document ID: SUTEFETB-01

|   |                                                                                                 | 1 | Т    | 1          |
|---|-------------------------------------------------------------------------------------------------|---|------|------------|
|   | First order reaction, Second order reaction, Arrhenius                                          |   |      |            |
|   | theory, Collision theory, Transition-state theory,                                              |   |      |            |
|   | Physical adsorption, Heterogenous catalysis,                                                    |   |      |            |
|   | examples of heterogeneously catalysed reaction                                                  |   |      |            |
|   | Electrochemistry                                                                                |   |      |            |
|   | Electrochemistry and Batteries: Basic concepts of                                               |   |      |            |
|   | electrochemistry. Batteries; Classification and                                                 |   |      |            |
|   | applications of Primary Cells (Dry Cell), Secondary                                             |   |      |            |
| 2 | Cells and fuel cell                                                                             | 9 | 20%  | CO2        |
|   | Corrosion: Introduction to corrosion. Types of                                                  |   |      |            |
|   | corrosion, Cause of corrosion, Corrosion prevention                                             |   |      |            |
|   | and control, Corrosion issues in specific industries                                            |   |      |            |
|   | (Power generation, Chemical processing industry, Oil                                            |   |      |            |
|   | & gas industry, and Pulp & paper industries).                                                   |   |      |            |
|   | General principal of organic Reaction                                                           |   |      |            |
|   | Reaction Intermediate, Types of organic reaction                                                |   | 20%  | CO2<br>CO3 |
| 3 | (Elimination and substitution reactions) and                                                    | 9 |      |            |
|   | mechanism of Grignard Reaction, Friedel-Crafts                                                  |   |      |            |
|   | Reaction, Reimer Tiemann reaction, Sandmeyer                                                    |   |      |            |
|   | Reaction, Hofmann Rearrangement                                                                 |   |      |            |
|   | Analytical chemistry Spectroscopic Techniques and Applications:                                 |   |      |            |
| 4 | Spectroscopic Techniques and Applications:<br>Elementary idea and simple applications of UV, IR | 9 | 20%  | CO4        |
| 4 | and NMR, Numerical problems. Application in                                                     | 9 | 20%  | CO4        |
|   | Chemical industry quality control example                                                       |   |      |            |
|   | Nano-Materials                                                                                  |   |      |            |
|   | Nano materials: Introduction, synthesis, and                                                    |   |      |            |
| 5 | application: fullerenes, Carbon Nano tube, and                                                  |   |      |            |
|   | Graphene.                                                                                       |   |      |            |
|   | Bio mimic in Technology examples Self-assembling                                                | 9 | 20%  |            |
|   | nanomaterials, Nanostructures based on butterfly                                                |   | 2070 | CO5        |
|   | wings, Nanopores inspired by cell membranes.                                                    |   |      |            |
|   | Application of nano material in catalysis, textile, and                                         |   |      |            |
|   | medicine.                                                                                       |   |      |            |
|   | medicine.                                                                                       |   |      |            |

|           | Suggested Distrib | oution of Theory M | larks Using Blo | oom's Taxo | nomy     |        |
|-----------|-------------------|--------------------|-----------------|------------|----------|--------|
| Level     | Remembrance       | Understanding      | Application     | Analyse    | Evaluate | Create |
| Weightage | 25                | 25                 | 20              | 15         | 10       | 5      |

NOTE: This specification table shall be treated as a general guideline for the students and the teachers. The actual distribution of marks in the question paper may vary slightly from above table.

Document Version: 1.0 Page 2 of 4



# Faculty of Engineering & Technology Bachelor of Technology (B. Tech)

(W. E. F.: 2023-24)

Document ID: SUTEFETB-01

#### Suggested List of Experiments/Tutorials

| Sr. No. | Name of Experiment/Tutorial                                                                   | Teaching<br>Hours |
|---------|-----------------------------------------------------------------------------------------------|-------------------|
| 1       | Preparation of graphene by chemical exfoliation and characterization of its properties        | 2                 |
| 2       | Determination of the concentration of a coloured species using UV-Vis spectrophotometry       | 2                 |
| 3       | Construction and characterization of a simple galvanic cell                                   | 2                 |
| 4       | Study of the effect of temperature on the rate of a reaction                                  | 2                 |
| 5       | Study of the effect of pH on the corrosion rate of a metal                                    | 2                 |
| 6       | Synthesis of aspirin and its analysis by spectroscopic methods such as UV and IR spectroscopy | 2                 |
| 7       | Synthesis of a graphene oxide solution                                                        | 2                 |
| 8       | Electrolysis of copper sulfate solution and determination of Faraday's constant               | 2                 |
| 9       | Synthesis of salicylic acid using Reimer-Tiemann reaction                                     | 2                 |
| 10      | Prepare a standard solution of Oxalic acid or potassium permanganate.                         | 2                 |

#### Major Equipment/ Instruments and Software Required

| Sr. No. | Name of Major Equipment/ Instruments and Softwares                                                                                                               |
|---------|------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1       | High-speed blender, ultrasonic bath, centrifuge, vacuum filtration setup, oven                                                                                   |
| 2       | UV-Vis spectrophotometer, cuvettes, sample solutions, deionized water                                                                                            |
| 3       | Electrodes (anode and cathode), wire, voltmeter, salt bridge, electrolyte solution, beakers.                                                                     |
| 4       | Temperature-controlled water bath, thermometer, reaction vessel, stirring setup, pH meter                                                                        |
| 5       | Corrosion testing apparatus, metal samples, pH meter, corrosion rate measurement apparatus.                                                                      |
| 6       | Electrolysis cell, copper sulfate solution, electrodes, ammeter, voltmeter, stopwatch, weighing balance.                                                         |
| 7       | Round-bottom flask, reflux condenser, ice bath, heating mantle, glass rod, separating funnel, vacuum filtration setup, spectroscopy instruments (UV-Vis and IR). |

### **Suggested Learning Websites**

| Sr. No. | Name of Website                               |
|---------|-----------------------------------------------|
| 1       | https://www.khanacademy.org/science/chemistry |
| 2       | https://www.chemguide.co.uk/                  |
| 3       | https://ocw.mit.edu/courses/chemistry/        |
| 4       | https://chem.libretexts.org/                  |
| 5       | https://www.rsc.org/                          |

Document Version: 1.0 Page 3 of 4



### Faculty of Engineering & Technology Bachelor of Technology (B. Tech)

(W. E. F.: 2023-24)
Document ID: SUTEFETB-01

#### **Reference Books**

| Sr. No. | Name of Reference Books                                                            |
|---------|------------------------------------------------------------------------------------|
| 1       | Chemical Kinetics and Reaction Mechanisms by James H. Espenson                     |
| 2       | Principles of Chemical Kinetics by James E. House                                  |
| 3       | Principles of Electrochemistry by Mohammed A. A. Khalid                            |
| 4       | Electrochemistry by Carl H. Hamann, Andrew Hamnett, and Wolf Vielstich             |
| 5       | Advanced Organic Chemistry by Jerry March                                          |
| 6       | Organic Reaction Mechanisms by V. K. Ahluwalia                                     |
| 7       | Reaction Mechanisms in Organic Chemistry by P. W. Atkins                           |
| 8       | Spectroscopic Methods in Organic Chemistry by Dudley H. Williams and Ian Fleming   |
| 9       | Analytical Chemistry by Gary D. Christian                                          |
| 10      | Fundamentals of Analytical Chemistry by Douglas A. Skoog, Donald M. West, F. James |
| 10      | Holler, and Stanley R. Crouch                                                      |
| 11      | Nanotechnology: Principles and Applications by Sulabha K. Kulkarni                 |
| 12      | Introduction to Nanomaterials and Devices by Devendra K. Sadana                    |
| 13      | Nanomaterials: Synthesis, Properties and Applications by A.S. Edelstein and R.C.   |
| 13      | Cammarata                                                                          |
| 14      | "Engineering chemistry": Fundamentals and applications by Sikha Agarwal            |
| 15      | "Chemistry for Engineers" by Amarika Singh and S Vairm                             |
| 16      | "Chemistry for Engineers" by B K Ambasta                                           |
| 17      | "Chemistry for Engineers (WIND) " by Rajesh Agnihotri                              |

Document Version: 1.0 Page 4 of 4