

Name of Faculty	ne of Faculty : Faculty of Pharmacy	
Name of Program	:	Bachelor of Pharmacy
Course Code	:	1BPH07
Course Title	:	Remedial Mathematics
Type of Course	:	Basic Sciences
Year of Introduction	:	2023-24

Prerequisite	:	Zeal to learn the subject		
Course Objective	:	This is an introductory course in mathematics. This subject deals		
		with the introduction to Partial fraction, Logarithm, matrices and		
		Determinant, Analytical geometry, Calculus, differential equation		
		and Laplace transform.		
Course Outcomes	:	At the end of this course, students will be able to:		
	CO1	To understand the theory of mathematics and their application in		
		Pharmacy.		
	CO2	o understand how to apply the different types of problems by		
		applying theory of mathematics in various pharmaceutical		
		formulations manufacturing and analysis.		
	CO3	To remember how to use mathematics in method development of		
		various active pharmaceutical ingredients.		
	CO4	To remember how to use mathematics in pharmacokinetics and		
		chemical kinetics and pharmacodynamics.		

Teaching and Examination Scheme

Teaching Scheme (Contact Cu		Credits	Examination Marks					
Hours)			Theory Marks		Practical Marks		Total	
L	Т	Р	С	SEE	CIA	SEE	CIA	Marks
02	00	00	02	35	15	00	00	50

Legends: L-Lecture; T-Tutorial/Teacher Guided Theory Practice; P – Practical, C – Credit, SEE – Semester End Examination, CIA - Continuous Internal Assessment (It consists of Assignments/Seminars/Presentations/MCQ Tests, etc.)

Course Content

Unit No.	Topics	Teaching Hours	Weightage	Mapping with COs
1	Partial fractionIntroduction, Polynomial, Rational fractions,Proper and Improper fractions, Partial fraction ,Resolving into Partial fraction, Application ofPartial Fraction in Chemical Kinetics andPharmacokineticsLogarithmsIntroduction, Definition, Theorems/Propertiesof logarithms, Common logarithms,Characteristic and Mantissa, worked examples,application of logarithm to solvepharmaceutical problems.Function:Real Valued function, Classification of realvalued functions,Limits and continuity :Introduction , Limit of a function, Definition oflimit of a function	06	20%	CO1 CO2
2	Matrices and Determinant: Introduction matrices, Types of matrices, Operation on matrices, Transpose of a matrix, Matrix Multiplication, Determinants, Properties of determinants, Product of determinants, Minors and co-Factors, Adjoint or adjugate of a square matrix, Singular and non-singular matrices, Inverse of a matrix, Solution of system of linear of equations using matrix method, Cramer's rule, Characteristic equation and roots of a square matrix, Cayley– Hamilton theorem,Applicationof Matrices in solving Pharmacokinetic equations	06	20%	CO1 CO2 CO3
3	Calculus Differentiation : Introductions, Derivative of a function, Derivative of a constant, Derivative of a product of a constant and a function , Derivative of the sum or difference of two functions,Derivative of the product of two functions (product formula), Derivative of the quotient of two functions (Quotient formula) – Without Proof, Derivative of xn w.r.t x ,where n is any rational number, Derivative of ex,, Derivative of loge x , Derivative of ax, Derivative of trigonometric	06	20%	CO1 CO2 CO3

	functions from first principles (without Proof), Successive Differentiation, Conditions for a function to be a maximum or a minimum at a point. Application			
4	Analytical GeometryIntroduction: Signs of the Coordinates, Distanceformula,Straight Line : Slope or gradient of a straightline, Conditions for parallelism andperpendicularity of two lines, Slope of a linejoining two points, Slope – intercept form of astraight lineIntegration: Introduction, Definition, Standardformulae, Rules of integration , Method ofsubstitution, Method of Partial fractions,Integration by parts, definite integrals,application	06	20%	CO1 CO2
5	 Differential Equations : Some basic definitions, Order and degree, Equations in separable form , Homogeneous equations, Linear Differential equations, Exact equations, Application in solving Pharmacokinetic equations Laplace Transform : Introduction, Definition, Properties of Laplace transform, Laplace Transforms of elementary functions, Inverse Laplace transforms, Laplace transform of derivatives, Application to solve Linear differential equations, Application in solving Chemical kinetics and Pharmacokinetics equations 	06	20%	CO1 CO2 CO4

Suggested Distribution of Theory Marks Using Bloom's Taxonomy						
Level	RemembranceUnderstandingApplicationAnalyseEvaluateCreate					
Weightage	50	50	00	00	00	00

NOTE: This specification table shall be treated as a general guideline for the students and the teachers. The actual distribution of marks in the question paper may vary slightly from above table.

Suggested List of Experiments/Tutorials - NA

Major Equipment/ Instruments and Software Required

Sr. No.	Name of Major Equipment/ Instruments and Software
1	Microsoft Mathematics App

Suggested Learning Websites

Sr. No.	Name of Website
1	https://pci.nic.in/pdf/Syllabus_B_Pharm.pdf
2	https://nptel.ac.in

Reference Books

Sr. No.	Name of Reference Books
1	Differential Calculus by Shanthinarayan
2	Pharmaceutical Mathematics with application to Pharmacy by Panchaksharappa Gowda
	D.H.
3	Integral Calculus by Shanthinarayan
4	Higher Engineering Mathematics by Dr.B.S.Grewal