

Name of Faculty	:	Faculty of Engineering & Technology	
Name of Program	:	Master of Technology (M.Tech.) - Artificial Intelligence & Data	
		Science	
Course Code	:	1MAI01	
Course Title	:	Applied Mathematics	
Type of Course	:	Professional Core	
Year of Introduction	:	2023-24	

Prerequisite	:	Applied Mathematics		
Course Objective	:	Establish a solid mathematical foundation applicable to various IT		
		domains, alongside the logical basis for modern techniques,		
		encompassing diverse fields and addressing sampling and		
		classification problems.		
Course Outcomes	:	At the end of this course, students will be able to:		
	CO1	To understand the mathematical fundamentals that is prerequisites		
		for a variety of courses like Data mining, Network protocols,		
		analysis of Web traffic, Computer security, Software engineering,		
		Computer architecture, operating systems,		
		distributed systems, Bioinformatics, Machine learning		
	CO2	To develop the understanding of the mathematical and logical basis		
		to many modern techniques in information technology like		
		machine learning, programming language design, and		
		concurrency		
	CO3	To study various sampling and classification problems.		

Teaching and Examination Scheme

Teachir	ng Scheme (Contact	Credits	ts Examination Marks							
	Hours)			Theory Marks		Theory Marks		Theory Marks Practical Marks		Marks	Total
L	Т	Р	С	SEE	CIA	SEE	CIA	Marks			
3	2	0	4	70	30	30	20	150			

Legends: **L**-*Lecture;* **T**-*Tutorial/Teacher Guided Theory Practice;* **P** – *Practical,* **C** – *Credit,* **SEE** – *Semester End Examination,* **CIA** - *Continuous Internal Assessment (It consists of Assignments/Seminars/Presentations/MCQ Tests, etc.))*

Course Content

Unit No.	Topics	Teaching Hours	Weightage	Mapping with CO
1	Probability mass, density, and cumulative distribution functions, Parametric families of distributions, Expected value, variance, conditional expectation, Applications of the	10	15%	CO1

Faculty of Engineering & Technology Master of Technology (M. Tech) (W. E. F.: 2023-24)

Document ID: SUTEFETM-01

	univariate and multivariate Central Limit			
	Theorem Probabilistic inequalities Markov			
	chains			
	Random samples sampling distributions of			
2	estimators Methods of Moments and	10	15%	CO1
_	Maximum Likelihood	10	20 /0	001
	Statistical inference. Introduction to			
	multivariate statistical models: regression and			
3	classification problems principal components	10	15%	CO2
	analysis. The problem of			
	overfitting model assessment			
	Graph Theory: Isomorphism, Planar graphs,			
	graph colouring, hamilton circuits and euler			
4	cycles. Permutations and Combinations with	15	20%	CO2
	and without repetition. Specialized techniques			
	to solve combinatorial			
	enumeration problems			
	Computer science and engineering			
	applications: Data mining, Network protocols,			
5	analysis of Web traffic, Computer security,	10	25%	CO2
	Software engineering, Computer architecture,			
	operating systems, distributed			
	systems, Bioinformatics, Machine learning			
	Recent Trands in various distribution functions			
6	in mathematical field of computer science for	05	10%	CO3
	varying fields like bioinformatic,			
	soft computing, and computer vision			

Suggested Distribution of Theory Marks Using Bloom's Taxonomy						
Level	Remembrance	Understanding	Application	Analyse	Evaluate	Create
Weightage	20	30	30	20	0	0

NOTE: This specification table shall be treated as a general guideline for the students and the teachers. The actual distribution of marks in the question paper may vary slightly from above table.

Sr. No.	Name of Experiment/Tutorial	Teaching Hours
1	Analyze the concept of randomization. Implement a program in a	06
1	language that supports graphics to Fush the bans from left and right	00
	allowing random movement and then let them fall in rectangle bins.	
	Show graphically how they form curve	
	Consider that there are two parties party1 and party2 contesting for elections.	
2	Consider candidate from either party1 or party2. Considervoting population	06
	and ask them about their likelihood to vote for the	
	candidate from party1. Now Ask the population again to show their	

Faculty of Engineering & Technology Master of Technology (M. Tech) (W. E. F.: 2023-24) Document ID: SUTEFETM-01

	likelihood for candidate after candidate gives speech. Now again rate	
	this. Use WEKA tool to simulate this	
	Write a program that takes two inputs- size of the house (no of	
3	rooms) and location of the house and accordingly give price of the	06
	house. Classify the house as very costly, costly, affordable, cheap.	
	Consider website of your institute. Represent the link structure by	
4	directed graph. Apply and implement algorithm to traverse the graph	06
	and to reach a faculty's web page in your department	
	Graph theory problem - there are k aircrafts and have to be assigned n	
	flights. The time interval of ith flight is (ti1,ti2). If the time interval overlaps	
5	for the flights the same aircraft cannot be assigned to both the flights.	06
	Vertices of the graph are flights. Two vertices are connected if the	
	corresponding time intervals overlap. Simulate the problem by applying	
	graph theory. Use simulation tool to simulate or	
	programming language to implement graph	

Major Equipment/ Instruments and Software Required

Sr. No.	Name of Major Equipment/ Instruments and Software
1	Python - Jupyter
2	Weka

Suggested Learning Websites

Sr. No.	Name of Website
1	https://www.quora.com/What-are-the-core-subjects-of-applied-mathematics
2	https://www.toprankers.com/what-is-cbse-applied-mathematics

Reference Books

Sr. No.	Name of Reference Books
1	John Vince, Foundation Mathematics for Computer Science, Springer
2	K. Trivedi.Probability and Statistics with Reliability, Queuing, and Computer Science Applications. Wiley
3	M. Mitzenmacher and E. Upfal.Probability and Computing: Randomized Algorithms and Probabilistic Analysis
4	Alan Tucker, Applied Combinatorics, Wiley