

Faculty of Engineering & Technology Master of Technology (M. Tech) (W. E. F.: 2023-24)

Document ID: SUTEFETM-01

	1	
Name of Faculty	:	Faculty of Engineering & Technology
Name of Program	:	Master of Technology (M.Tech.) – Cyber Security
Course Code	:	1MCS05
Course Title	:	Data Structures and Algorithms Using Python
Type of Course	:	Professional Core
Year of Introduction	:	2023-24

Prerequisite	:	foundation in Python programming, mathematical concepts, programming logic, basic data structures, algorithmic complexity analysis		
Course Objective	:	To understand the fundamentals of Data Structures.		
Course Outcomes	:	At the end of this course, students will be able to:		
	CO1	Identify the appropriate data structures as per the specified problem definition.		
	CO2	Demonstrate the operations like searching, insertion, and deletion, traversing mechanism etc. on various data structures.		
	CO3	Analyse the complexity of the given algorithms.		

Teaching and Examination Scheme

Teachir	ng Scheme (Contact	Credits Examination Marks					
	Hours)			Theory Marks		Practical Marks		Total
L	Т	Р	С	SEE	CIA	SEE	CIA	Marks
2	0	2	3	70	30	30	20	150

Legends: L-Lecture; T-Tutorial/Teacher Guided Theory Practice; P – Practical, C – Credit, SEE – Semester End Examination, CIA - Continuous Internal Assessment (It consists of Assignments/Seminars/Presentations/MCQ Tests, etc.))

Course Content

Unit No.	Topics			Teaching Hours	Weightage	Mapping with CO
1	Introduction: classification of da structure, Develop and analysis, recu Definition, Types arrays operations	Data ta structure, o oment of Algo rsion, Arrays: of	structure: perations on data rithms: Notations nd applications of	12	20%	CO1
	arrays, sparse ma	trices.				

Faculty of Engineering & Technology Master of Technology (M. Tech) (W. E. F.: 2023-24)

Document ID: SUTEFETM-01

	** * * * * * * * * * * * * * * * * * * *			
2	Linked Lists: Linear, circular, double, and priority link lists, operations on polynomials, dynamic storage management: garbage collection and compaction.	12	20%	CO1 CO2
3	Stacks: Stacks as ADT, Different implementation of the stack, multiple stacks. Application of Stack: Conversion of infix to postfix notation using stack, evaluation of postfix expression, Recursion. Queues: Queues as ADT, Different implementation of queue, Circular queue, Concept of Dequeue and Priority Queue, Queue simulation, Application of queues.	12	20%	CO1 CO2
4	Linear search, binary search; Sorting Techniques: selection, bubble, insertion, merge, heap, quick, and radix sort, Hashing: Hash Functions, separate chaining, open addressing, rehashing.	12	20%	CO2 CO3
5	D Tree: General tree, binary Tree, rooted tree, binary search tree, tree traversal, Expression manipulation, height-balanced trees, red-blacktrees. Graph: Definition, walks, paths, trails, connected graphs, regular and bipartite graphs, cycles and circuits, Spanning trees, Hamiltonian and Eulerian graphs, planar graphs, Graph traversal techniques, shortest path problems	12	20%	CO2 CO3

Suggested Distribution of Theory Marks Using Bloom's Taxonomy						
Level	Remembrance	Understanding	Application	Analyse	Evaluate	Create
Weightage	20	30	30	20	0	0

NOTE: This specification table shall be treated as a general guideline for the students and the teachers. The actual distribution of marks in the question paper may vary slightly from above table.

Suggested Learning Websites

Sr. No.	Name of Website
1	https://www.geeksforgeeks.org/python-data-structures/
2	https://www.edureka.co/blog/data-structures-in-python/
3	https://docs.python.org/3/tutorial/datastructures.html
4	https://www.tutorialspoint.com/python_data_structure/python_data_structure_int roduction.htm

Faculty of Engineering & Technology Master of Technology (M. Tech) (W. E. F.: 2023-24) Document ID: SUTEFETM-01

Reference Books

Sr. No.	Name of Reference Books
1	"Python Algorithms: Mastering Basic Algorithms in the Python Language" by Magnus Lie
L	Hetland
2	"Problem Solving with Algorithms and Data Structures Using Python" by Bradley N. Miller
2	and David L. Ranum
2	"Data Structures and Algorithms in Python" by Michael T. Goodrich, Roberto Tamassia, and
3	Michael H.
4	"Python Data Structures and Algorithms" by Benjamin Baka