

Faculty of Engineering & Technology Master of Technology (M. Tech)

(W. E. F.: 2023-24)

Document ID: SUTEFETM-01

Name of Faculty : Faculty of Engineering & Technology		Faculty of Engineering & Technology
Name of Program : Master of Technology (M. Tech)		Master of Technology (M. Tech)
Course Code	:	1MPS03
Course Title	:	Renewable Energy System
Type of Course	:	Programme Elective (PE)
Year of Introduction	:	2023-24

Prerequisite	:	Knowledge of conventional energy sources			
Course Objective	:	Power System is a very complicated field of Electrical Engineering.			
		The objective of this course is to provide basic understanding of			
		the upcoming technology of renewable energy systems and to			
		have an overall understanding of energy systems. To provide			
		exposure to different aspects like policy, design control and grid			
		integration of renewable energy systems. The students will be able			
		to find the reasonableness of the use of renewable energy after			
		comparing the available resources This subject covers the different			
		types of contingency situations, methods to increase security,			
		efficiency & to eliminate Bad data from the system.			
Course Outcomes	:	At the end of this course, students will be able to:			
	CO1	To Understand and evaluate different types of renewable energy			
		sources.			
	CO2	To Analyse energy technologies from a systems perspective.			
	CO3	To Understand the technical challenges for each of the renewable			
		sources			
	CO4	To Evaluate economic, technical, and sustainability issues			
		involved in the integration of renewable energy systems to the			
		grid			
	CO5	To Analyse the performance and compare it from a design			
		viewpoint.			

Teaching and Examination Scheme

Teaching Scheme (Contact		Credits	Examination Marks					
Hours)			Theory Marks		Practical Marks		Total	
L	T	P	С	SEE	CIA	SEE	CIA	Marks
3	0	2	4	70	30	30	20	150

Legends: L-Lecture; T-Tutorial/Teacher Guided Theory Practice; P – Practical, C – Credit, SEE – Semester End Examination, CIA - Continuous Internal Assessment (It consists of Assignments/Seminars/Presentations/MCQ Tests, etc.))

Document Version: 1.0 Page 1 of 3

Faculty of Engineering & Technology Master of Technology (M. Tech)

(W. E. F.: 2023-24)

Document ID: SUTEFETM-01

Course Content

Unit No.]	Горісѕ			ching ours	Weightage	Mapping with CO
1	Introduction Energy Use Reserv Environmental Aspe Renewable Energy Availability, Scenari Around The World - / Applications, R Hybrid energy syste systems and disperse	ects of Energy U Seasonal Variati io In Gujarat, Ir - Potentials, Achie esources, and ems Distributed	tilization ons and adia and evements Features.		11	25%	CO1, CO2
2	Solar Energy	pectrum. F nologies. App Prying, Distillation Photovoltaic Ples. Photovolta dule, array. Sen	Systems ic cell ries and		10	20%	CO1, CO4
3	Wind Energy Types of Wind Energy Systems, Comparison of Performance Site Selection, Wind Data and Energy Estimation Details Of Wind Turbine Generator and comparison Safety and Environmental Aspects Grid Connection issues Governmental Incentives/policies Wind energy Potential and Installation in India.				10	20%	CO1, CO3
4	Other Renewable Energy Sources Tidal Energy, Wave Energy, Open And Closed OTEC Cycles Small Hydro Geothermal Energy Hydrogen And Storage Fuel Cell Systems				07	15%	CO5
5	Hybrid System Need for Hybrid Systems Range and type of Hybrid systems Case studies of Diesel-PV, Wind-PV, Micro hydel PV, Biomass-Diesel systems, electric and hybrid electric vehicles				07	20%	CO5
Lovel	Suggested Distraction Remembrance	Lindorstanding					Create
Level Weightag		Understanding 20	Applicati 10	1011	Analyse 15	Evaluate 10	05

NOTE: This specification table shall be treated as a general guideline for the students and the teachers. The actual distribution of marks in the question paper may vary slightly from above table.

Document Version: 1.0 Page 2 of 3

Faculty of Engineering & Technology Master of Technology (M. Tech)

(W. E. F.: 2023-24)

Document ID: SUTEFETM-01

Suggested List of Experiments/Tutorials

Sr. No.	Name of Experiment/Tutorial	Teaching Hours
1	Scenario of different renewable energy system in Gujarat and india.	04
2	Modelling of Solar PV sub-systems	04
3	Modelling of wind generation sub-systems Control of Power generation from various renewable energy systems	04
4	Energy management strategies for grid integration and exchange of power between renewable energy sources and grid.	04
5	Simulation of power electronics converter/inverter used for grid integration of wind and solar	04
6	Design examples related to Energy Efficiency.	04
7	Create hybrid system model in software.	04

Major Equipment/ Instruments and Software Required

Sr. No.	Name of Major Equipment/ Instruments and Software
1	MATLAB Simulink
2	Pyranometer
3	Sunshine recorder
4	Solar power meter
5	Solar liquid flat plate collector
6	Cylindrical Parabolic Collector
7	Compound parabolic collector
8	Box type solar cooker
9	Solar drier
10	wind mill

Suggested Learning Websites

Sr. No.	Name of Website
1	https://vlab.amrita.edu/
2	https://nptel.ac.in/courses/112105051
3	https://nptel.ac.in/courses/108105058
4	https://nptel.ac.in/courses/121106014
5	https://ocw.mit.edu/collections/energy/

Reference Books

Sr. No.	Name of Reference Books
1	Tiwari. G.N., Solar Energy - "Fundamentals Design, Modelling & Applications", Narosa
1	Publishing House, New Delhi, 2002.
2	L.L. Freris, "Wind Energy Conversion Systems", Prentice Hall, 1990.
3	Renewable Energy Engineering and Technology, Kishore VVN, Teri Press, New Delhi
4	Alternative Energy Sources, Veziroglu, T.N., Vol 5 and 6, McGraw-Hill, 1990
5	Godfrey Boyle, "Renewable Energy, Power For A Sustainable Future", Oxford
3	University Press, U.K., 1996

Document Version: 1.0 Page 3 of 3