

Faculty of Engineering & Technology Master of Technology (M. Tech)

(W. E. F.: 2023-24)

Document ID: SUTEFETM-01

	:	Faculty of Engineering & Technology
Name of Faculty		
Name of Program	:	Master of Technology (M. Tech)
Course Code	:	1MPS06
Course Title	:	Artificial Intelligence in Power System
Type of Course	:	Open Elective (OE)
Year of Introduction	:	2023-24

Prerequisite	:	Artificial Intelligence			
Course Objective	:	This course gives a detailed understanding of Artificial			
		Intelligence & Neural networks and the application of AI to the			
		power system field of Electrical Engineering.			
Course Outcomes	:	At the end of this course, students will be able to:			
	CO1	Γο Apply meta-heuristic techniques for solving optimization			
		roblems.			
	CO2	To Understand ANN and fuzzy logic.			
	CO3	To Analyse AI techniques for applications related to Power			
		system.			
	CO4	To Apply AI techniques for electrical engineering applications.			

Teaching and Examination Scheme

Teaching Scheme (Contact			Credits		Ex	amination	Marks	
Hours)			Theory	Marks	Practica	l Marks	Total Marks	
L	T	P	С	SEE	CIA	SEE	CIA	Total Walks
3	2	0	4	70	30	30	20	150

Legends: L-Lecture; T-Tutorial/Teacher Guided Theory Practice; P-Practical, C-Credit, SEE-Semester End Examination, CIA-Continuous Internal Assessment (It consists of Assignments/Seminars/Presentations/MCQ Tests, etc.))

Course Content

Unit No.	Topics	Teaching Hours	Weightage	Mapping with CO
1	Introduction: Overview and historical perspective, advantages and disadvantages of AI, need for human intervention, data analytics and present trends.	03	15%	CO1
2	Artificial Neural Network: Introduction to artificial neural networks, basic models and activation functions, learning in neural networks, single layer and multi-layer feed-forward and feedback neural networks,	06	20%	CO2

Document Version: 1.0 Page 1 of 3

Faculty of Engineering & Technology Master of Technology (M. Tech)

(W. E. F.: 2023-24)

Document ID: SUTEFETM-01

	backpropagation algorithm, factors affecting the performance of artificial neural network			
3	Fuzzy Logic: Introduction, fuzzy Sets, operations and properties of fuzzy sets, membership functions, fuzzy relations, fuzzy logic and rule-based system, defuzzification methods, fuzzy logic modelling and controller design.	06	20%	CO2
4	Meta-heuristic Techniques: Genetic Algorithm (GA) - Introduction, fitness function, reproduction, crossover, mutation, Particle Swarm Optimization (PSO) - Introduction, principle, velocity updating, parameter selection, binary version, recent techniques.	06	20%	CO1
5	AI Applications in Power Systems: Forecasting, economic load dispatch, fault identification and classification, fault diagnosis, load frequency control, reactive power control, MPPT algorithms, motor drive applications, power quality	09	25%	CO3, CO4

Suggested Distribution of Theory Marks Using Bloom's Taxonomy						
Level	Remembrance	Understanding	Application	Analyse	Evaluate	Create
Weightage	20	25	20	20	10	05

NOTE: This specification table shall be treated as a general guideline for the students and the teachers. The actual distribution of marks in the question paper may vary slightly from the above table.

Suggested List of Experiments/Tutorials

Sr. No.	Name of Experiment/Tutorial	Teaching Hours
1	To learn ANN implementation using the software.	02
2	To learn fuzzy logic implementation using software	02
3	To perform load forecasting using ANN	02
4	To carry out load frequency control using fuzzy logic	02
5	To execute fault identification and classification using ANN	02
6	To carry out economic load dispatch using soft computing techniques	02
7	To perform fuzzy logic-based control of induction motor drive	02
8	To perform soft computing technique based MPPT	02
9	To analyse the performance of ANN-controlled power quality improvement devices	02

Document Version: 1.0 Page 2 of 3

Faculty of Engineering & Technology Master of Technology (M. Tech)

(W. E. F.: 2023-24)

Document ID: SUTEFETM-01

Major Equipment/ Instruments and Software Required

Sr. No.	Name of Major Equipment/ Instruments and Software
1	Python Programming
2	Raspberry pi
3	MATLAB
4	C++

Suggested Learning Websites

Sr. No.	Name of Website
1	https://www.artbreeder.com/
2	Wix ADI

Reference Books

Sr. No.	Name of Reference Books	
S. Rajasekaran and G.A.V. Pai, Neural Networks, Fuzzy logic, Genetic Algo-		
1	Synthesis and applications, PHI Publication	
2	N.P. Padhy, Artificial Intelligence and Intelligent System, Oxford University Press.	
3	B Kosko. Neural Networks and Fuzzy Systems; Prentice-Hal	

Document Version: 1.0 Page 3 of 3