

Faculty of Science Master of Science (M.Sc.)

(W. E. F.: 2023-24)

Document ID: SUTEFSCM-01

Name of Program	Tame of Program : Master of Science		
Course Code	:	: 1MSB01	
Course	:	Microbial Genetics and Biostatistics	
Type of Course	:	Professional Core	
Year of Introduction	:	2023-24	

Prerequisite	:	To impart the knowledge of Microbial genetics			
Course Objective	:	Understanding the concept of gene and DNA			
		Understanding the concept of phage, plasmid replication			
		Understanding and application of Biostatistics			
		Microbial genetics has a role in developing the fields of molecular			
		and cell biology and has various applications in medicine, food,			
		agriculture and pharmaceutical industries.			
Course Outcomes	:	At the end of this course, students will be able to:			
	CO1	Know and understand the concept of DNA, Plasmid, replication and			
		also various concepts of replication, transcription and translation			
	CO2	Understand the concepts of molecular biology			
	CO3	Application of concepts of biostatistics in research.			
	CO4	Analyses and interpret the statistical data.			

Teaching and Examination Scheme

Teaching Scheme		Credits	Examination Marks					
(Contact			Theory Marks		Practical Marks		Total marks	
Hours)			•					
L	Т	P	С	SEE	CIA	SEE	CIA	
4	0	0	4	70	30	-	-	100

Legends: L-Lecture; T-Tutorial/Teacher Guided Theory Practice; P – Practical, C – Credit, SEE – Semester End Examination, CIA - Continuous Internal Assessment (It consists of Assignments/Seminars/Presentations/MCQ Tests, etc.

Course Content

Unit No.	Topics	Teaching Hours	Weightage	Mapping with COs
	Molecular Biology 1			
1	Features of DNA Replication, Proof of	13	29%	CO1
	semiconservative nature of DNA replication, Features			
	of bidirectional DNA replication. Mechanism of			
	bidirectional DNA replication			
	RNA structure and types of RNA, Transcription in			

DocumentVersion:1.0 Page 1 of 3

Faculty of Science Master of Science (M.Sc.)

(W. E. F.: 2023-24)

Document ID: SUTEFSCM-01

	-			
	prokaryotes with E. coli as model system: Prokaryotic			
	RNA polymerase, role of sigma factor, promoter,			
	Initiation, elongation and termination of RNA chains			
	Components of Protein synthesis machinery:			
	Messenger RNA, tRNA structure and function,			
	Charging of tRNA, aminoacyl tRNA synthetases,			
	ribosome structure and assembly.			
	Mechanism of protein synthesis in prokaryotes:			
	initiation, elongation and termination.			
	Principles of gene regulation, negative and regulation,			
	concept of operons, Regulation of gene expression in			
	bacteria : lac operon concept.			
	DNA damage and mutation			
2	Plasmid Biology (Types of plasmids, compatibility,			
_	regulation of plasmid copy number and plasmid			
	segregation			
	Causes (spontaneous, chemical agent, radiation)			
	and types of DNA damage			
	Mechanism of DNA repair: Direct repair, base	12	26%	CO1
	excision repair, nucleotide excision repair mismatch		2070	
	repair, recombination repair.			
	Molecular basis of mutation, types of mutation			
	(missense mutation, nonsense mutation silent			
	mutation, point mutation, frameshift mutation)			
	Genetics of microorganisms			
3	Plasmid Biology (Types of plasmids, compatibility,			
	regulation of plasmid copy number and plasmid			
	segregation)	10	22%	CO2
	eriophage genetics: T4, T7, Lambda phages Bacteriophage			
	recombination - complementation, fine structure analysis			
	Biostatistics			
	Meaning of data and their representation in			
	biostatistics.			
	Measures of central tendency			CO3
	Measures of dispersion with computation.	10	23%	CO4
	Normal distribution curve, characteristics and uses			
	with computation.			
	Correlation: meaning, types and methods of			
	correlation.			
	➤ Statistical inference and significance of test in			
	biostatistics.			
	biodutiouco.			

DocumentVersion:1.0 Page 2 of 3

Faculty of Science Master of Science (M.Sc.)

(W. E. F.: 2023-24)

Document ID: SUTEFSCM-01

Suggested Distribution of Theory Marks Using Bloom's Taxonomy						
Level	Remembrance Understanding Application Analyse Evaluate Create					
Weightage	25	25	25	25	0	0

NOTE: This specification table shall be treated as a general guideline for the students and the teachers. The actual distribution of marks in the question paper may vary slightly from above table.

Major Equipment / Instruments

Sr. No.	Name of Major Equipment/ Instruments and Software
1	Analytical Balance
2	Autoclave
3	Micropipettes
4	Stains
5	Light Microscope
6	Anaerobic jar
7	UV Chamber
8	Hot Air Oven
9	Centrifuge
10	Electrophoresis
11	SDS PAGE
12	PCR
13	Deep Freezer
14	Autoradiography

Suggested Learning Websites

Sr. No.	Name of Website
1	https://onlinecourses.nptel.ac.in/noc22_bt07/preview

Reference Books

Sr. No.	Name of Reference Books
1	Genetics of bacteria Scaife et.al
2	Molecular biology of gene J.D.Watson
3	Molecular cell biology Lodish et.al
4	Molecular genetics of bacteria Snyder & champnes
5	Introduction to biostatistics R. N. Forthofer & Lee Duncun microorganism

DocumentVersion:1.0 Page 3 of 3