

Faculty of Engineering & Technology Master of Technology (M. Tech) (W. E. F.: 2023-24)

Document ID: SUTEFETM-01

Name of Faculty	:	culty of Engineering & Technology		
Name of Program	:	Master of Engineering (M. Tech)		
Course Code	:	1MSE01		
Course Title	:	Information & Network Security		
Type of Course	:	Professional Core (PC)		
Year of Introduction	:	2023-24		

Prerequisite	:	Mathematical concepts: Random numbers, Number theory,				
		finite fields				
Course Objective	:	NA				
Course Outcomes	:	At the end of this course, students will be able to:				
	CO1	Define and analyse various security goals and understand the				
		security policies such as the CIA triad of Confidentiality, Integrity				
		and Availability.				
	CO2	Understand and evaluate the mathematical formulations used in				
		symmetric key and Asymmetric key cryptography to design				
		various security solutions.				
	CO3	Illustrate a basic symmetric key and modern symmetric key				
		cryptography techniques, how it has evolved, and evaluate in				
		today's world.				
	CO4	Evaluate Asymmetric key encryption techniques, key distribution				
		scenario and calculate public and private components of asymmetric				
		key encryption techniques.				

Teaching and Examination Scheme

Teachir	ig Scheme	(Contact	Credits	Examination Marks				
	Hours)			Theory	Marks	Practical	l Marks	Total
L	Т	Р	C	SEE	CIA	SEE	CIA	Marks
2	0	0	2	70	30	0	0	100

Legends: L-Lecture; T-Tutorial/Teacher Guided Theory Practice; P – Practical, C – Credit, SEE – Semester End Examination, CIA - Continuous Internal Assessment (It consists of Assignments/Seminars/Presentations/MCQ Tests, etc.))

Faculty of Engineering & Technology Master of Technology (M. Tech) (W. E. F.: 2023-24) Document ID: SUTEFETM-01

Course Content

Unit No.	Topics	Teaching Hours	Weightage	Mapping with CO
	Introduction			
1	Security Goals, Attacks, Services and Mechanisms,	2	04 %	CO1
	Techniques			
	Mathematics of Cryptography			
2	Integer Arithmetic, Modular Arithmetic, Matrices,	2	06 %	CO2
	Linear Congruence			
	Tradition Symmetric Key Ciphers			
3	Introduction, Substitution Ciphers, Transposition	2	07%	CO1
	Ciphers, Stream and block Ciphers			
4	Introduction to Modern Symmetric Key Ciphers	2	00%	CO3
4	Modern Block Ciphers, Modern Stream Ciphers	2	0970	003
	Data Encryption Standard			
5	Introduction, DES Structure, DES Analysis, Multiple	3	11%	CO4
	DES, Security of DES			
	Advanced Encryption Standard			
6		3	09%	CO2
Ŭ	Cichara Examples Analysis (AEC	U		
	Ciphers, Examples, Analysis of AES			
	DDIMES Dualiminary Testing Easterization Chinese			
7	Privies, Preliminary Testing, Factorization, Chinese	3	09%	CO3
	Remainder Theorem, Quadratic Congruence,			
	Asymmetric Key Cryptography			
0	Introduction DSA Countroductom RABIN	2	00%	CO2
0	Gruntaguatam ELCAMAL Gruntaguatam	3	09 /0	002
	Koy Managamant			
0	Symmetric Kay Distribution Karboros	3	00%	CO^{2}
9	Symmetric Key Distribution, Reiberos,	5	0970	002
	Security at the application layer PCP and S/MIME			
10	Email PGP S/MIME and Algorithm	3	09%	CO4
	Security at the transport layer SSL and TSL			
11	SSI Architecture FOUR Protocole SSI Message	2	00%	CO4
11	Formate Transport Layer Security	2	0970	004
	F-commerce Security			
10	Electronic Voting / Polling systems Standards and	2	00%	CO4
14	Applications	۷	0970	0.04

Suggested Distribution of Theory Marks Using Bloom's Taxonomy						
Level	Remembrance	Understanding	Application	Analyse	Evaluate	Create
Weightage	40	20	30	-	-	10

NOTE: This specification table shall be treated as a general guideline for the students and the teachers. The actual distribution of marks in the question paper may vary slightly from above table.

Suggested Learning Websites

Sr. No.	Name of Website
1	http://www.interhack.net/pubs/network-security/

Reference Books

Sr. No.	Name of Reference Books
1	Behrouz A. Forouzan, "Cryptography and Network Security", THM, ISBM: 978-0-07-
	066046-5
2	Eric Cole, Ronald Krutz, "Network Security Bible", Wiley - ISBN:81-2650576-1
3	Vijay K Bhargava, "Communications, Information and network Security", Kluwer
	Academics Publication; ISBN-1-4020-7251-1
4	Bruce Scheneir: "Applied Cryptography", 2/E, John Wiley, 1996.
5	Menezes, Oorschot, Vanstone: "Handbook of Applied Cryptography", CRC Press, 1996.
6	D Stinson, "Cryptography: Theory and Practice", 2/E, Chapman & Hall, 2002