

Faculty of Engineering & Technology Master of Technology (M. Tech) (W. E. F.: 2023-24) Document ID: SUTEFETM-01

Name of Faculty	:	Faculty of Engineering & Technology
Name of Program	:	Master of Engineering (M. Tech)
Course Code	:	1MSE05
Course Title	:	Advanced Computer Architecture & Parallel Processing (PE - I)
Type of Course	:	Professional Elective (PE)
Year of Introduction	:	2023-24

Prerequisite		Computer Architecture & Digital Logic Design				
Course Objection	•					
Course Objective	:	The course objectives of Advanced Computer Architecture and				
		Parallel Processing may vary depending on the institution and the				
		specific curriculum. However, here are some common objectives				
		that are typically associated with this course: Understand the				
		advance Computer Architecture, Exploring Parallel Processing				
		concept, Analyse Performance and Scalability, Design and				
		Optimization of Parallel Processing Algorithms etc.				
Course Outcomes	:	At the end of this course, students will be able to:				
	CO1	Understand the various techniques to enhance a processors ability				
		to exploit Instruction-level parallelism (ILP), and its challenges.				
	CO2	Consider various techniques of instruction-level parallelism,				
		including superscalar execution, branch prediction, and speculation,				
		in design of high- performance processors.				
	CO3	Design basic and intermediate RISC pipelines, including the				
		instruction set, data paths, and ways of dealing with pipeline				
		hazards.				
	CO4	Verify the performance of computing systems with extended				
		components				
	CO5	Develop an understanding of various basic concepts associated				
		with parallel computing environments.				

Teaching and Examination Scheme

Teaching Scheme (Contact			Credits	Examination Marks				
	Hours)			Theory Marks		Practical	Marks	Total
L	Т	Р	С	SEE	CIA	SEE	CIA	Marks
3	0	2	4	70	30	30	20	150

Legends: L-Lecture; T-Tutorial/Teacher Guided Theory Practice; P – Practical, C – Credit, SEE – Semester End Examination, CIA - Continuous Internal Assessment (It consists of Assignments/Seminars/Presentations/MCQ Tests, etc.))

Faculty of Engineering & Technology Master of Technology (M. Tech) (W. E. F.: 2023-24) Document ID: SUTEFETM-01

Course Content

Unit No.	Topics	Teaching Hours	Weightage	Mapping with CO
	Introduction to Advanced Computer Architecture			
1	Four Decades of Computing, Flynn's Taxonomy of Computer Architecture, SIMD Architecture, MIMD Architecture, Interconnection Networks	02	04 %	CO1
	Introduction to Parallel Processing			
2	Parallelism in Uniprocessor System, Parallel Computer Structure, Architectural Classification Schemes, Parallel Processing Applications.	05	11 %	CO2
	Parallel Computer Models			
3	Multiprocessors and Multicomputer, Multivector and SIMD Computers, PRAM & VLSI Models, Architectural Development Tracks.	07	16%	CO2
	Program and Network Properties			
4	Conditions of Parallelism, Program Partitioning and Scheduling, Program Flow Mechanisms, System	05	11%	CO5
	Interconnect Architectures.			
5	Performance Metrics and Measures Speedup Performance Laws Scalability Analysis and Approaches.	07	15%	CO4
	Processor and Memory Hierarchy			
6	Advanced Processor Technology Superscalar and Vector Processors Memory Hierarchy Technology Virtual Memory Technology.	06	13%	CO4
	Bus, Cache & Shared Memory			
7	Bus Systems, Cache Memory Organizations, Shared Memory Organizations, Sequential and Weak Consistency Model	06	14%	CO5
	Pipelining & Superscalar Techniques			
8	Linear Pipeline Processors, Non-Linear Pipeline			
	Processors	07	16%	CO3
	Instruction Pipeline Design, Arithmetic Pipeline Design Superscalar & Superpipe line Design.			

Suggested Distribution of Theory Marks Using Bloom's Taxonomy						
Level	Remembrance	Understanding	Application	Analyse	Evaluate	Create
Weightage	40	20	20	10	-	10

NOTE: This specification table shall be treated as a general guideline for the students and the teachers. The actual distribution of marks in the question paper may vary slightly from above table.

Faculty of Engineering & Technology Master of Technology (M. Tech) (W. E. F.: 2023-24) Document ID: SUTEFETM-01

Suggested List of Experiments/Tutorials

Sr. No.	Name of Experiment/Tutorial	Teaching Hours
1	Implement Booth's Algorithm.	2
2	Write the working of 8085 simulator GNUsim8085 and basic architecture of 8085 along with small introduction.	2
3	Write an assembly language code in GNUsim8085 to store numbers in reverse order in memory location.	2
4	Write an assembly language code in GNUsim8085 to implement arithmetic instruction.	2
5	Write an assembly language code in GNUsim8085 to find the factorial of a number.	2
6	Write an assembly language code in GNUsim8085 to implement logical instructions.	2
7	Design ALU using Logisim.	2
8	Implement 16-bit single-cycle MIPS processor in Verilog HDL.	2

Reference Books

Sr. No.	Name of Reference Books
1	Kai Hwang, Faye A. Briggs, "Computer Architecture and Parallel Processing", Tata
	McGraw Hill.
2	Hesham El-Rewini, Mostafa Abd-El-Barr "Advanced Computer Architecture and
	Parallel Processing", Wiley
3	Introduction to Parallel Computing, Ananth Grama, Anshul Gupta, George Karypis,
	Vipin Kumar, By Pearson Publication
4	Introduction to Parallel Processing, M. SasiKumar, Dinesh Shikhare, P.Raviprakash
4	By PHI Publication Steven Brawer,
5	Introduction To Parallel Programming, Academic Pr
6	M.Sasikumar, Dinesh Shikhare and P. Ravi Prakash, Introduction to Parallel
	Processing, Prentice Hall of India.
7	V. Rajaraman and C. Siva Ram Murthy, Parallel Computers - Architecture and
	Programming, Prentice Hall of India.