

Faculty of Science Master of Science (M. Sc) (W.E.F.:2023-24) Document ID: SUTEFSCM-01

Name of Faculty	:	Faculty of Science
Name of Program	:	Master of Science
Course Code	:	1MSO05
Course Title	:	Practical – I (Organic chemistry and Inorganic Chemistry)
Type of Course	:	Basic Science
Year of Introduction	:	2023-24

Prerequisite	:	Basic practical knowledge of Inorganic and organic chemistry.
Course Objective	:	Chemistry Practicals provide students to learn about synthesis, separation, purification and identification of organic compound. It developes the ability to correlate the chemical and physical properties of elements and their compounds with their positions in the periodic table.
		At the end of this course, students will be able to:
		To understand good laboratory practices and safety
	CO2	To practically apply the concepts learnt in organic reaction
	CO3 To impart advanced knowledge on the semi-micro of analysis of mixture of metal ions.	
	CO4	To develop hands on experience on making various organic compounds by employing synthetic strategies.

Teaching and Examination Scheme

Teaching Scheme (Contact		Credits	Examination Marks						
	Hours)			Theory Marks		Theory Marks Practical Marks		l Marks	Total
L	Т	Р	С	SEE	CIA	SEE	CIA	Marks	
0	0	8	4	-	-	70	30	100	

Legends: L-Lecture; T–Tutorial/Teacher Guided Theory Practice; P – Practical, C – Credit, SEE – Semester End Examination, CIA - Continuous Internal Assessment (It consists of Assignments/Seminars/Presentations/MCQ Tests, etc.)

NOTE: This specification table shall be treated as a general guideline for the students and the teachers. The actual distribution of marks in the question paper may vary slightly from above table.

Suggested List of Experiments / Tutorials

Sr. No.	Name of Experiment/Tutorial	Teachin g Hours	Mapping With COs
---------	-----------------------------	-----------------------	---------------------

Faculty of Science Master of Science (M. Sc) (W.E.F.:2023-24) Document ID: SUTEFSCM-01

	Part A: Organic Chemistry Practical One Step Preparation of organic compounds : (Minimum 15)				
1	Nitration	04	CO1		
2	Bromination	04	CO2		
3	Acylation	04	CO4		
4	Reduction	04			
5	Oxidation	04			
6	Condensation reaction	04			
7	Diazotization reaction	04			
8	Friedl-Craft's reaction	04			
9	Cannizzaro's reaction	04			
10	Aldol condensation	04			
	Part B: Inorganic Chemistry Practical Semi-microqualitative analysis of 15 mixtures, each having six radicals including less familiar elements (Mo, W, Li, Th, V, Zr, Ce, Be, Ti) and one insoluble compounds	04 x 15 =60	CO1 CO3		

Suggested Distribution of Theory Marks Using Bloom's Taxonomy						
Level	Remembrance	Understanding	Application	Analyse	Evaluate	Create
Weightage	20	20	20	20	20	-

Major Equipment / Instruments and Software Required

Sr.No.	Name of Major Equipment / Instruments and Software
1	Kipp's Apparatus
2	Condenser
3	Distillation assembly
4	Weighing Balance
5	measuring cylinder
6	conical flask
7	glass rod
8	beaker
9	test tubes
10	funnel
11	test tube stand

Suggested Learning Websites

Sr. No.	Name of Website
1	https://onlinecourses.nptel.ac.in/noc23_cy36/preview
2	https://onlinecourses.nptel.ac.in/noc23_cy54/preview
3	https://onlinecourses.nptel.ac.in/noc23_cy58/preview

Reference Books

Γ	Sr. No.	Name of Reference Books
	1	A text book of practical organic chemistry – A. I. Vogel

Faculty of Science Master of Science (M. Sc) (W.E.F.:2023-24)

Document ID: SUTEFSCM-01

2	Practical organic Chemistry - Mann and Saunders
3	Comprehensive Practical Organic Chemistry: Preparations and Quantitative Analysis V
5	K Ahluwalia & R. Aggarwal Universities Press.
4	Comprehensive Practical Organic Chemistry: Qualitative Analysis V K Ahluwalia & S.
4	Dhingra.
5	A handbook of quantitative and qualitative analysis – H. T. Clarke.
6	An Advance Course in practical Chemistry, A K. Nad, B. Mahapatra and A. Ghoshal.
7	Vogel's Qualitative Inorganic Analysis, Revised by G Svehla, Sixth Edition, Longman,
	1987.