

Faculty of Engineering & Technology Master of Technology (M. Tech) (W. E. F.: 2023-24)

Document ID: SUTEFETM-01

Name of Faculty	:	Faculty of Engineering & Technology
Name of Program	:	Master of Technology (M. Tech)
Course Code	:	1MTE01
Course Title	:	Advanced Heat and Mass Transfer
Type of Course	:	PC
Year of Introduction	:	2023-24

Prerequisite	:	Basic knowledge of Heat and Mass Transfer	
Course Objective	:	To understand the mechanisms of heat transfer through different	
		conditions	
Course Outcomes	:	At the end of this course, students will be able to:	
	CO1	To able to learn about mode of Heat Transfer.	
	CO2	Analyze steady state and transient heat conduction problems of	
		real life Thermal systems	
	CO3	Analyze extended surface heat transfer problems and problems	
		of phase change heat transfer like boiling and condensation	
	CO4	Analyze radiation heat transfer problems of various thermal	
		systems.	
	CO5	Use of software (like EES) for solving thermodynamic and heat	
		transfer problems	

Teaching and Examination Scheme

Teaching Scheme (Contact		Credits	Examination Marks					
Hours)			Theory Marks		Practical Marks		Total	
L	Т	Р	С	SEE	CIA	SEE	CIA	Marks
04	00	02	05	70	30	30	20	150

Legends: L-Lecture; T-Tutorial/Teacher Guided Theory Practice; P – Practical, C – Credit, SEE – Semester End Examination, CIA - Continuous Internal Assessment (It consists of Assignments/Seminars/Presentations/MCQ Tests, etc.))

Course Content

Unit No.	Topics	Teaching Hours	Weightage
1	Unit-1 Basic Concepts: Modes of heat transfer, Fourier's law, Newton's law, Stefan Boltzman law; thermal resistance and conductance, analogy between flow of heat and electricity, combined heat transfer process; Conduction: Fourier heat conduction equation, its form in rectangular, cylindrical and spherical coordinates,	8	10%

Faculty of Engineering & Technology Master of Technology (M. Tech) (W. E. F.: 2023-24) Document ID: SUTEFETM-01

[[thermal diffusivity	linear one dimens	ional steady sta	to]
	conduction throug	h a slab, tubes, sp actures, electric nickness for pipes,	herical shells ar cal analogie	nd es,		
2	Unit 2 Extended Su Heat transfer from a uniform cross temperature in a t effectiveness, appli Transient and perio of bodies with systems with infini thermocouples.	a straight and ann section; error in hermometer well, ications; Unsteady odic conduction, he known temperatu	measurement fin efficiency, f heat conductio ating and coolin tres distributio	of in n: 8 ng n,		20%
3	Unit 3 Convection: Introduction, free and forced convection; principle of dimensional analysis, Buckingham 'pie' theorem, application of dimensional analysis of free and forced convection, empirical correlations for laminar and turbulent flow over flat plate and tubular geometry; calculation of convective heat transfer coefficient using data book.					25%
4	Unit 4 Heat Exchangers: Types- parallel flow, counter flow; evaporator and condensers, overall heat transfers coefficient, fouling factors, log-mean temperature difference (LMTD), method of heat exchanger analysis, effectiveness of heat exchanger, NTU method; Mass transfer: Fick's law, equi-molar diffusion, diffusion coefficient, analogy with heat transfer, diffusion of vapour in a stationary medium.					25%
5	Unit 5 Thermal Radiation : Nature of radiation, emissive power, absorption, transmission, reflection and emission of radiation, Planck's distribution law, radiation from real surfaces; radiation heat exchange between black and gray					
Laval		-	-		-	Create
Level	Remembrance	Understanding	Application	Analyse	Evaluate	Create
Weightage	20%	40%	20%	15%	05%	0 %

NOTE: This specification table shall be treated as a general guideline for the students and the teachers. The actual distribution of marks in the question paper may vary slightly from above table.

Suggested List of Experiments/Tutorials

Sr. No.	Name of Experiment/Tutorial	Teaching Hours
1	To determine the thermal conductivity of given metal rod	02
2	To determine the thermal conductivity of the given composite walls.	02
3	To determine Stephan Boltzmann constant experimentally.	02
4	To determine heat transfer co-efficient by forced convection.	02
5	To determine heat transfer co-efficient by natural convection.	02
6	To determine the overall heat transfer co-efficient of shell and tube type heat exchangers.	02
7	To determine the emissivity of gray body.	02
8	To study film and drop wise condensation and to determine the film co-efficient	02
9	To measure convective heat transfer co-efficient and effectiveness of the fin under forced convection.	02
10	To measure convective heat transfer co-efficient and effectiveness of the fin under natural convection	02

Major Equipment/ Instruments and Software Required

Sr. No.	Name of Major Equipment/ Instruments and Software	
1	Hair pin heat exchanger, Shell and tube heat exchanger, Pin fin apparatus	
2	Emissivity measurement apparatus, Composite wall apparatus, Stefan Boltzman apparatus, Natural and force convection apparatus	
3	transient heat transfer apparatus, critical radius apparatus, film and drop wise condensation apparatus	

Suggested Learning Websites

Sr. No.	Name of Website
1	https://nptel.ac.in

Reference Books

Sr. No.	Name of Reference Books	
1	Heat Transfer, Krieth, Cengage learn (Thomson)	
2	Heat transfer by J.P. Holman.	
3	Analysis of Heat transfer E.R.G.Eckerst and R.M. Drake Jr. McGraw Hills.	
4	Heat mass and momentum transfer .W.M.Roshenow and P.Choi, Prentice Hall.	