

Faculty of Engineering & Technology Master of Technology (M. Tech) (W. E. F.: 2023-24)

Document ID: SUTEFETM-01

Name of Faculty	:	Faculty of Engineering & Technology	
Name of Program	:	Master of Technology (M. Tech)	
Course Code	:	1MTE02	
Course Title	:	Advanced Thermodynamics & Combustion Engineering	
Type of Course	:	PC	
Year of Introduction	:	2023-24	

Prerequisite	:	Basic knowledge of thermodynamics system	
Course Objective	:	To enhance the understanding of thermodynamics principles and	
		their relevance to the problem of humankind.	
Course Outcomes	:	At the end of this course, students will be able to:	
	CO1	Apply entropy principle to various thermal engineering	
		applications	
	CO2	Apply the concept of second law efficiency and exergy principle	
		to various thermal engineering applications	
	CO3	Analyze steady state and transient heat conduction problems of	
		real life Thermal systems	
	CO4	Analyze extended surface heat transfer problems and problems	
		of phase change heat transfer like boiling and condensation.	
	CO5	Analyze radiation heat transfer problems of various thermal	
		systems	

Teaching and Examination Scheme

Teaching Scheme (Contact		Credits	Examination Marks					
Hours)			Theory Marks		Practical Marks		Total	
L	Т	Р	C	SEE	CIA	SEE	CIA	Marks
04	02	00	05	70	30	30	20	150

Legends: L-Lecture; T-Tutorial/Teacher Guided Theory Practice; P – Practical, C – Credit, SEE – Semester End Examination, CIA - Continuous Internal Assessment (It consists of Assignments/Seminars/Presentations/MCQ Tests, etc.))

Course Content

Unit No.	Topics	Teaching Hours	Weightage
1	Equation of State: State postulate for Simple System and equation of state, Ideal gas equation, Deviation from ideal gas, Equation of state for real gases, generalized Compressibility chart, Law of corresponding states	6	10%
2	Thermodynamic Property Relations:	7	20%

Faculty of Engineering & Technology Master of Technology (M. Tech) (W. E. F.: 2023-24)

Document ID: SUTEFETM-01

	Partial Differentials, Maxwell relations, Clapeyron		
	equation, general relations for du, dh, ds, and Cv and		
	Cp, Joule Thomson Coefficient, Δh , Δu , Δs of real gases.		
	Laws of thermodynamics:		
	2nd law Analysis for Engg. Systems, Entropy flow &		
	entropy generation, Increase of entropy principle,		
	entropy change of pure sub, T-ds relations, entropy		
3	generation, thermo electricity, Onsager equation.	8	20%
	Exergy analysis of thermal systems, decrease of Exergy		
	principle and Exergy destruction, Third law of		
	thermodynamics, Nerst heat theorem and thermal death		
	of universe		
	Entropy:		
	A Measure of Disorder: Increases of entropy principle		
	and its application, Tds relation, entropy change of		
	solid, liquid and ideal gas, entropy transfer with heat		
	transfer, entropy generation in open and closed system		
4	, entropy balance Exergy: A Measure of Work Potential:	12	25%
	Exergy transfer by heat, work & mass, decrease of		
	exergy principle and exergy destruction, applications of		
	Gouv-Stodola theorem, exergy balance for steady flow		
	and closed processes, second law efficiency Law of		
	Corresponding States		
	Combustion Technology: Chemical reaction - Fuels and		
	combustion, Enthalpy of formation and enthalpy of		
	combustion, First law analysis of reacting systems,		
	adiabatic flame temperature Chemical and Phase		
	equilibrium - Criterion for chemical equilibrium,		
5	equilibrium constant for ideal gas mixtures, some	12	25%
	remarks about Kp of Ideal-gas mixtures, fugacity and		
	activity, Simultaneous relations, Variation of Kp with		
	Temperature, Phase equilibrium, Gibb's phase rule, Gas		
	Mixtures - Mass & mole fractions, Dalton's law of		
	partial pressure, Amagat's law, Kay's rule.		

NOTE: This specification table shall be treated as a general guideline for the students and the teachers. The actual distribution of marks in the question paper may vary slightly from above table.

Suggested Learning Websites

Sr. No.	Name of Website
1	https://nptel.ac.in

Reference Books

Sr. No.	Name of Reference Books
1	Heat Power and Thermodynamics by M.W.Zemansky (McGraw Hill).

Faculty of Engineering & Technology Master of Technology (M. Tech) (W. E. F.: 2023-24) Document ID: SUTEFETM-01

2	Combustion, Flames and explosions of gases, B.Lewis and G.Von Elbe Academic P.
3	Thermal Sciences, Potter, Cengage Learn (Thomson).
4	Engineering thermodynamics by Gurdon Rogers Yon Mayhew