
 

 

  

Faculty of Engineering & Technology 
Diploma Engineering (DE) 
(W. E. F.: 2023-24) 
Document ID: SUTEFETD-01 

 

 

 
Document Version: 1.0   Page 1 of 5 

 
 

Name of Faculty : Faculty of Engineering & Technology 

Name of Program : Diploma of Technology (D. Tech) 

Course Code : 2DIT01 

Course Title : Basics of Python Programming 

Type of Course : Basic Engineering 

Year of Introduction : 2023-24 

 

Prerequisite : High level language (C/C++/Java), Web Programming 

Course Objective : Develop a strong foundation in Python programming language, 

including its syntax, data types, and control structures 

Course Outcomes : At the end of this course, students will be able to: 

CO1 Interpret the fundamental python syntax, semantics and fluent 

in the use of python control flow statements. Express 

proficiency in the handling of strings and functions. 

CO2 Apply control structures of python for developing programs 

CO3 Develop a program in Python using built-in functions, modules, 

and library functions. 

CO4 List and handle exceptions, raise exceptions and create user 

defined exceptions 

CO5 Determine the methods to create and manipulate python 

programs by utilizing the data structures like lists, dictionaries, 

tuples and sets. 

 CO6 Develop python programs to solve real world problems 

 

Teaching and Examination Scheme 

Teaching Scheme (Contact 

Hours) 

Credits 

 

Examination Marks 

Theory Marks Practical Marks Total 

Marks L T P C SEE CIA SEE CIA 

3 0 4 5 70 30 30 20 150 

 

Legends: L-Lecture; T–Tutorial/Teacher Guided Theory Practice; P – Practical, C – Credit, SEE – Semester End 

Examination, CIA - Continuous Internal Assessment (It consists of Assignments/Seminars/Presentations/MCQ 

Tests, etc.)) 

 

 

 

 

 

 



 

 

  

Faculty of Engineering & Technology 
Diploma Engineering (DE) 
(W. E. F.: 2023-24) 
Document ID: SUTEFETD-01 

 

 

 
Document Version: 1.0   Page 2 of 5 

 
 

Course Content 

Unit 
No. 

Topics 
Teaching 

Hours 
Weightage 

Mapping 
with CO 

1 

Basics of Python: 
Using the Python Interpreter, Variables, 
Identifiers and Keywords, Numbers and 
Expressions 

02 15% 

 
CO1 

2 

Control structures and Function: 
Conditional Branching: if Statements, break and 
continue Statements, and else Clauses on 
Loops, pass Statements Loops: while Loops, for 
Loops, Defining Functions, More on Defining 
Functions: Default Argument Values, Keyword 
Arguments, Arbitrary Argument Lists, 
Unpacking Argument Lists, Lambda 
Expressions, Documentation Strings, Function 
Annotations 

08 25% 

 
 
 
 

CO2 
CO6 

 

3 

Modules and Scoping Rules: 
Executing modules as scripts, The Module 
Search Path, “Compiled” Python files, 
Packages: Importing * From a Package, Intra-
package References, Packages in Multiple 
Directories 

05 20% 

 
 

CO2 
CO6 

4 

Exceptions Handling:: 
Syntax Errors, Exceptions, Handling 
Exceptions, Raising Exceptions, User-defined 
Exceptions, Defining Clean-up Actions, 
Predefined Clean-up Actions 

07 15% 

 
 

CO3 
CO6 

5 

Data Structures: Lists, Tuples, Dictionaries and 
Strings: 
Common Sequence Operations: Indexing, 
Slicing, Adding Sequences, Multiplication, 
Membership, Length, Minimum, and 
Maximum, Using Lists as Stacks, Using Lists as 
Queues, List Comprehensions, Nested List 
Comprehensions, the del statement, Tuples and 
Sequences, Sets, Dictionaries, Comparing 
Sequences and Other Types, Basic String 
Operations 

08 25% 

 
 
 
 

CO4 
CO6 

 

Suggested Distribution of Theory Marks Using Bloom's Taxonomy 

Level Remembrance Understanding Application Analyse Evaluate Create 

Weightage 20 35 35 0 0 0 

 

NOTE: This specification table shall be treated as a general guideline for the students and the teachers. The actual 

distribution of marks in the question paper may vary slightly from above table. 



 

 

  

Faculty of Engineering & Technology 
Diploma Engineering (DE) 
(W. E. F.: 2023-24) 
Document ID: SUTEFETD-01 

 

 

 
Document Version: 1.0   Page 3 of 5 

 
 

Suggested List of Experiments/Tutorials  

Sr. No. Name of Experiment/Tutorial 
Teaching 

Hours 

1 
Create a program that asks the user to enter their name and their age. 
Printout a message addressed to them that tells them the year that they 
will turn 100 years old. 

02 

2 Ask the user for a number. Depending on whether the number is 02 

3 
even or 2 odd, print out an appropriate message to the user. Hint: how 
does an even / odd number react differently when divided by 2? 

02 

4 

Create a program that asks the user for a number and then prints out a 
list of all the divisors of that number. (If you don’t know what a divisor 
is, it is a number that divides evenly into another number. 
For 
example, 13 is a divisor of 26 because 26 / 13 has no remainder.) 

02 

5 

Take two lists, say for example these two: 
a = [1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89] 
b = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13] and write a program that returns 
a list that contains only the elements that are common between the lists 
(without duplicates). Make sure your program 
works on two lists of different sizes. 

02 

6 
Ask the user for a string and print out whether this string is a 
palindrome or not. (A palindrome is a string that reads the same 
forwards and backwards.) 

02 

7 
Let’s say I give you a list saved in a variable: a = [1, 4, 9, 16, 25, 36, 49, 
64, 81, 100]. Write one line of Python that takes this list and 
makes a new list that has only the even elements of this list in it. 

02 

8 

Make a two-player Rock-Paper-Scissors game. (Hint: Ask for player 
plays  (using input), compare them,  print out a message of 
congratulations to the winner, and ask if the players want to start a new 
game) Remember the rules: 
Rock beats scissors, Scissors beats paper, Paper beats rock 

02 

9 

Generate a random number between 1 and 9 (including 1 and 9). Ask 
the user to guess the number, then tell them whether they guessed too 
low, too high, or exactly right. (Hint: remember to use the user input 
lessons from the very first practical) 

02 

10 

This week’s exercise is going to be revisiting an old exercise (see 
Practical 3), except require the solution in a different way. 
Take two lists, say for example these two: 
a = [1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89] 
b = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13] and write a program that returns 
a list that contains only the elements that are common between the lists 
(without duplicates). Make sure your program works on two lists of 
different sizes. Write this in one line of Python 
using at least one list comprehension 

02 

11 

Ask the user for a number and determine whether the number is prime 
or not. (For those who have forgotten, a prime number is a number that 
has no divisors.). You can (and should!) use your answer to Practical 2 
to help you. Take this opportunity to practice 
using functions, described below. 

02 



 

 

  

Faculty of Engineering & Technology 
Diploma Engineering (DE) 
(W. E. F.: 2023-24) 
Document ID: SUTEFETD-01 

 

 

 
Document Version: 1.0   Page 4 of 5 

 
 

12 
Write a program that takes a list of numbers (for example, a = [5, 10, 15, 
20, 25]) and makes a new list of only the first and last elements 
of the given list. For practice, write this code inside a function. 

02 

13 

Write a program that asks the user how many Fibonacci numbers to 
generate and then generates them. Take this opportunity to think about 
how you can use functions. Make sure to ask the user to enter the 
number of numbers in the sequence to generate. (Hint: The Fibonacci 
sequence is a sequence of numbers where the next number in the 
sequence is the sum of the previous two numbers in the sequence. The 
sequence looks like this: 1, 
1, 2, 3, 5, 8, 13, …) 

02 

14 
Write a program (function!) that takes a list and returns a new list 
that contains all the elements of the first list minus all the duplicates. 

02 

15 

Write a program (using functions!) that asks the user for a long string 
function. Containing multiple words. Print back to the user the same 
string, except with the words in backwards order. For example, say I 
type the string: My name is Michele 
Then I would see the string: Michele is name My shown back to me. 

02 

16 

Write a password generator in Python. Be creative with how you 
generate passwords - strong passwords have a mix of lowercase letters, 
uppercase letters, numbers, and symbols. The passwords should be 
random, generating a new password every time the user 
asks for a new password. Include your run-time code in a main method. 

02 

17 
Write a Python class named Circle constructed by a radius and two 
methods which will compute the area and the perimeter of a circle. 

02 

18 

Python supports classes inheriting from other classes. The class being 
inherited is called the Parent or Superclass, while the class that inherits 
is called the Child or Subclass. How can we define the order in which 
the base classes are searched when executing a method? 

02 

19 

Write a function that takes an ordered list of numbers (a list where the 
elements are in order from smallest to largest) and another number. The 
function decides whether or not the given number is inside the list and 
returns (then prints) an appropriate boolean. 

02 

20 
Given a .txt file that has a list of a bunch of names, count how many 
of each name there are in the file, and print out the results to the screen. 

02 

21 Write a Program to remove all whitespaces using regular expressions 02 

22 
Write a program to accept 10 numbers from the user and sort the 10 
numbers using bubble sort and insertion sort. 

02 

23 
Write a program to catch on Divide by zero Exception with finally 
clause. 

02 

24 
Write a user-defined exception that could be raised when the text 
entered by a user consists of less than 10 characters. 

02 

25 Write a python program to demonstrate exception handling. 02 

 

Major Equipment/ Instruments and Software Required 

Sr. No. Name of Major Equipment/ Instruments and Software 

1 Python IDLE 

2 Anaconda Python 



 

 

  

Faculty of Engineering & Technology 
Diploma Engineering (DE) 
(W. E. F.: 2023-24) 
Document ID: SUTEFETD-01 

 

 

 
Document Version: 1.0   Page 5 of 5 

 
 

3 PyCharm 

 

Suggested Learning Websites 

Sr. No. Name of Website 

1 https://www.python.org/ 

2 http://www.diveintopython3.net/ 

3 https://developer.mozilla.org/en-US/docs/Learn/Server-side/Django 

4 https://www.fullstackpython.com/django.html 

 

Reference Books 

Sr. No. Name of Reference Books 

1 David Beazley, Brian K. Jones, "Python Cookbook", 3rd edition, OREILLY,2016 

2 
Brett Slatkin, "Effective Python: 59 Specific Ways to Write Better Python", Novatec, 
2016 

3 
Allen Downey, "Think Python: How to Think Like a Computer Scientist", Green Tea 
Press,2015 

4 Mark Lutz "Learning Python", 4th Edition, O’REILLY, 2016 

5 
Arun Ravindran, Aidas Bendoraitis, Samuel Dauzon, "Django: Web Development with 
Python",Packt Publishing, 2016 

 

 


