

Faculty of Engineering & Technology Master of Technology (M. Tech) (W. E. F.: 2023-24) Document ID: SUTEFETM-01

Name of Faculty	:	Faculty of Engineering & Technology
Name of Program	:	Master of Technology (M.Tech.) - Artificial Intelligence and Data
		science
Course Code	:	2MAI01
Course Title	:	Deep Learning
Type of Course	:	Professional core
Year of Introduction	:	2023-24

Prerequisite	:	Deep learning is vast area of AI where the concepts are used			
Course Objective	:	This course is aimed at imparting candidates for gives and understanding of the theoretical basis underlying neural networks and deep learning.			
Course Outcomes	:	At the end of this course, students will be able to:			
	CO1	Understand the fundamentals of Deep Learning.			
	CO2	Familiarize with Neural Networks aspects.			
	CO3	Recognize the tangible applications of ML and Neural Networks.			
	CO4	To understand Derivatives and tensors, Stochastic gradient descents, Back propagation.			
	CO5	To Learn Neural Networks, Convolution operation, Max pooling, Power of CNNs			
	CO6	To learn to use LSTMs to synthesize text, Neural Style transfer and applications, Image synthesis with auto encoders			

Teaching and Examination Scheme

Teachir	ng Scheme (Contact	Credits	Examination Marks				
	Hours)			Theory Marks Practical Marks		Marks	Total	
L	Т	Р	С	SEE	CIA	SEE	CIA	Marks
4	0	2	5	70	30	30	20	150

Legends: L-Lecture; **T**-Tutorial/Teacher Guided Theory Practice; **P** – Practical, **C** – Credit, **SEE** – Semester End Examination, **CIA** - Continuous Internal Assessment (It consists of Assignments/Seminars/Presentations/MCQ Tests, etc.))

Course Content

Unit No.	Topics	Teaching Hours	Weightage	Mapping with CO
	The Fundamentals of Deep Learning: Differentiate			
	Deep Learning from machine learning,			
	Evolution of AI, and ML: HistoricalEpochs, Deep			
1	Learning relevance. The matrixmagic: Scalars-			
	>Vectors->Matrices->Tensors. Real-world			
	data representation. Tensor	08	20%	CO1
	operations and visualization, Visualizing Deep			
	Learning, Elephant in the room.			

Faculty of Engineering & Technology Master of Technology (M. Tech) (W. E. F.: 2023-24)

(W. E. F.: 2023-24) Document ID: SUTEFETM-01

	Gradient Descent:			
	Derivatives and tensors, Stochastic gradient			
	descents, Back propagation: our very own			
	chainrule of differentiation!			
2	Layers:	08	20%	CO1
	the atoms of DL, Models: the molecules of			COI
	DL, Loss functions, Optimizers, Activation			
	Functions, Application and types, Deep			
	Learning in Action, Multiclass Classification			
	and Regression.Overfitting and underfitting.			
	Convolutional Neural Networks and			
	Recurrent Neural Networks:			
	Introduction to Neural Networks,			
	Convolution operation, Max pooling, Power			CO2
3	of CNNs: abstraction across layers, reusing	09	20%	02
	popular CNNS & fine-tuning. Recurrent			CO5
	Networks, LSTMs & GRU, Examples of			
	simple RNNs, Complex recurrent neural			
	networks: Overfitting in RNNs, Multi-layer			
	RNNs, Multi-directional RNNs. Real- life			
	examples: One-dimensional sequence			
	processing, CNN+RNN.			
	Generative Deep Learning:			
	Using LSTMs to synthesize text, Neural Style			
	transfer and applications, Image synthesis			
4	with auto encoders, Generative Adversarial	10	20%	CO3
	Networks, Generator, Discriminator,			CO4
	Generatorvs Discriminator, Training GANs.			
	MIMO Deep Learning models, Layers			
	graphs: acyclic and			
	directional, Bag of tricks: ensemble of models.			
	Tangential Topics of ML and Neural			
_	Networks: Information-Theoretic Machine	10		
5	Learning, Hebbian Learning, Competitive	10	20%	CO2
	Learning, Boltzmann Learning, Radial Basis			CO5
	Function			CO6
	Networks.			

Faculty of Engineering & Technology Master of Technology (M. Tech) (W. E. F.: 2023-24) Document ID: SUTEFETM-01

Suggested Distribution of Theory Marks Using Bloom's Taxonomy						
Level	Remembrance	Understanding	Application	Analyse	Evaluate	Create
Weightage	20	30	30	20	0	0

NOTE: This specification table shall be treated as a general guideline for the students and the teachers. The actual distribution of marks in the question paper may vary slightly from above table.

Suggested Learning Websites

Sr. No.	Name of Website
	https://aws.amazon.com/what-is/deep
1	learning/#:~:text=Deep%20learning%20is%20a%20method,produce%20accurate%20i
	nsights%20and%20predictions.
2	https://www.ibm.com/topics/deep-learning
3	https://www.geeksforgeeks.org/introduction-deep-learning/

Reference Books

Sr. No.	Name of Reference Books
1	Deep Learning by Ian Goodfellow, Yoshua Bengio and Aaron Courville
2	Grokking Deep Learning by Andrew W. Trask
3	Deep Learning for Coders with fastai and PyTorch by Jeremy Howard and Sylvain Gugger
4	Deep Learning Illustrated: A Visual, Interactive Guide to Artificial Intelligence by Jon Krohn, Grant Beyleveld, and Aglaé Bassens