

Name of Faculty	:	Faculty of Computer Science & Applications
Name of Program	:	Master of Computer Application (MCA)
Course Code	:	2MCA03
Course Title	:	Internet of Things (IoT)
Type of Course	:	Professional Core
Year of Introduction	:	2023-24

Prerequisite	:	UG level course in C Programming and Networking Basics.			
Course Objective	:	This subject has emerged technology with applications in			
,		manufacturing, healthcare, agriculture, transport, mining, sma			
		cities, etc. This subject covers the fundamentals with its			
		architecture, protocols, and applications. It also covers the			
		overview and programming of two widely used loT platforms			
		Arduino and Raspberry Pi.			
Course Outcomes	:	At the end of this course, students will be able to:			
	CO 1	describe the benefits of loT technologies for automating real-life			
		challenges in the application areas.			
	CO 2	experiment with the functions of the sensors and their			
		interfacing.			
	CO 3	demonstrate the architecture and functioning of loT systems			
		including the sensors and microcontrollers with their interfacing			
		and software needs considering application areas.			
	CO 4	0.11			
		functioning within loT systems for efficient communication.			
	CO 5	analyse loT systems for utilization of Clouds for computing and			
		storage issues.			

Teaching and Examination Scheme

Teaching Scheme (Contact		Credits	Examination Marks					
Hours)			Theory Marks		Practical Marks		Total	
L	Т	Р	С	SEE	CIA	SEE	CIA	Marks
2	0	4	4	70	30	30	20	150

Legends: L-Lecture; T–Tutorial/Teacher Guided Theory Practice; P – Practical, C – Credit, SEE – Semester End Examination, CIA - Continuous Internal Assessment (It consists of Assignments/Seminars /Presentations/MCQ Tests, etc.))

Faculty of Computer Science & Applications Master of Computer Application (MCA) (W. E. F.: 2023-24)

Document ID: SUTEFCAM-01

Course Content

Unit No.	Topics	Teaching Hours	Weightage	Mapping with CO
1	Introduction to Internet of Things: Application areas of loT, Characteristics of loT, Things in loT, loT stack, Enabling technologies, loT challenges, loT levels	6	20%	CO1
2	Sensors, Actuators and Interfacing: Types & Working of Sensors, Sensor interfacing, Types & Working of Actuators, Actuators interfacing, Controlling Actuators	6	20%	CO2
3	Microcontrollers, Prototyping Boards and Their Interfacing : Microcontrollers Architecture and its family, register organization of 8051 microcontrollers, features of 8051 Advanced RISC Machine Architecture and its family, registers organization of ARM microcontrollers, features of ARM, Basics of Arduino: Architecture, Arduino Uno Specifications, Basics of Raspberry Pi Architecture, Pi-4 Specifications	8	20%	CO3
4	Protocols for IoT: Protocols for IoT: Messaging protocols: MQTT and CoAP, XMPP and DDS protocols, Transport protocols: BLE and Light Fidelity, Addressing and identification protocol, IPv4, IPv6, URI	6	20%	CO4
5	IoT Application Building with Cloud: Introduction to loT with cloud, Challenges loT with cloud, introduction of Fog computing, Working of Fog. loT applications: Healthcare, Water quality, Retail, Collision impact	4	20%	CO5

Suggested List of Experiments/Tutorials

Suggested Distribution of Theory Marks Using Bloom's Taxonomy						
Level	RemembranceUnderstandingApplicationAnalyseEvaluateCreate					
Weightage	30%	40%	20%	10%	-	-

NOTE: This specification table shall be treated as a general guideline for the students and the teachers. The actual distribution of marks in the question paper may vary slightly from above table.

Suggested List of Experiments/Tutorials

Sr. No.	Name of Experiment/Tutorial	Teaching Hours
1	Define and Explain Eclipse IoT Project.	06
2	List and summarize few Eclipse IoT Projects.	04
3	Sketch the architecture of IoT Toolkit and explain each entity in brief.	06
4	Demonstrate a smart object API gateway service reference implementation in IoT toolkit.	06
5	Write and explain working of an HTTP- to- CoAP semantic mapping proxy in IoT toolkit.	06
6	Describe gateway-as-a-service deployment in IoT toolkit.	06
7	Explain application framework and embedded software agents for IoT toolkit.	06
8	Explain working of Raspberry Pi.	06
9	Connect Raspberry Pi with your existing system components.	06
10	Give overview of Zetta	06

Major Equipment/ Instruments and Software Required

Sr. No.	Name of Major Equipment/ Instruments and Software
1	https://github.com/connectIOT/iottoolkit
2	https://www.arduino.cc/
3	http://www.zettajs.org/
4	Contiki (Open source IoT operating system)
5	Arduino (open source IoT project)
6	IoT Toolkit (smart object API gateway service reference implementation)
7	Zetta (Based on Node.js, Zetta can create IoT servers that link to various devices and
/	sensors)

Suggested Learning Websites

Sr. No.	Name of Website
1	http://swayam.gov.in/
2	Arduino Uno
3	Arduino software
4	http://www.arduino.cc

Reference books:

Sr. No.	Name of Reference Books
1	Vijay Madisetti and Arshdeep Bahga, "Internet of Things (A Hands-on-Approach)", 1 st Edition, VPT, 2014

Faculty of Computer Science & Applications Master of Computer Application (MCA) (W. E. F.: 2023-24)

Document ID: SUTEFCAM-01

2	Francis daCosta, "Rethinking the Internet of Things: A Scalable Approach to Connecting Everything", 1 st Edition, Apress Publications, 2013
3	Cuno Pfister, Getting Started with the Internet of Things, O"Reilly Media, 2011, ISBN: 978-1-4493- 9357-1
4	internet of Things, By Vasudevan, Nagrajan and Sundaram I Wiley India
5	loT Fundamentals, By David Hence at el l Cisco Press
6	21 loT Experiments, By Yashavant Kanetkar, Shrirang Korde I BPB
7	loT Based Projects, By Rajesh Singh at el I BPB