

Faculty of Computer Science & Applications Master of Computer Application (MCA) (W. E. F.: 2023-24)

Document ID: SUTEFCAM-01

Name of Faculty : Faculty of Computer Science & Applications		Faculty of Computer Science & Applications
Name of Program : Master of Computer Application (MCA)		Master of Computer Application (MCA)
Course Code	:	2MNM01
Course Title	:	Numerical Methods
Type of Course	:	Basic Science
Year of Introduction	:	2023-24

Prerequisite	:	Discrete Mathematics			
Course Objective	:	This Course will enhance the students ability to think logically			
		and mathematically			
Course Outcomes	:	At the end of this course, students will be able to:			
	CO 1	Demonstrate understanding of common numerical methods and			
		how they are used to obtain approximate solutions to solution			
		to otherwise intractable mathematical problems.			
	CO 2	Apply numerical methods to obtain approximate solutions to			
		mathematical problems.			
	CO 3	Analyse and evaluate the accuracy of common numerica			
		methods.			

Teaching and Examination Scheme

Teaching Scheme (Contact		Credits	Examination Marks					
	Hours)			Theory Marks		Theory Marks Practical Marks		Total
L	Т	Р	С	SEE	CIA	SEE	CIA	Marks
3	0	0	3	70	30	0	0	100

Legends: L-Lecture; T-Tutorial/Teacher Guided Theory Practice; P- Practical, C - Credit, SEE - Semester End Examination, CIA - Continuous Internal Assessment (It consists of Assignments/Seminars/Presentations/MCQ Tests, etc.))

Course Content

Unit No.	Topics	Teaching Hours	Weightage	Mapping with CO
1	Interpolation: Lagrange's Interpolation, Newton's forward & backward Interpolation Formula. Extrapolation; Newton's Divided Difference Formula; Error; Problems.	8	20%	CO1
2	Numerical Differentiation:Use of Newton'sforward and backward interpolation formulaonly.Numerical Integration:Trapezoidal formula(composite);Simson's 1/3rd formula (composite);RombergIntegration(statement only);Problems.	10	25%	CO1 CO2

Faculty of Computer Science & Applications Master of Computer Application (MCA) (W. E. F.: 2023-24)

Document ID: SUTEFCAM-01

3	Numerical Solution of System of Linear Equations: Gauss elimination method; Matrix Inversion; Operations Count; LU Factorization Method (Crout's Method); Gauss-Jordan Method; Gauss- Seidel Method; Sufficient Condition of Convergence.	10	25%	CO2
4	NumericalSolutionofAlgebraicandTranscendentalEquations:IterationMethod:BisectionMethod;SecantMethod;Regula-FalsiMethod;Newton-RaphsonMethod.SecantSecantSecant	6	15%	CO3
5	Numerical solution of Initial Value Problems of First Order Ordinary Differential Equations: Taylor's Series Method; Euler's Method; Runge- Kutta Method (4th order); Modify Euler's Method	6	15%	CO3

Suggested Distribution of Theory Marks Using Bloom's Taxonomy						
Level	Remembrance	Understanding	Application	Analyse	Evaluate	Create
Weightage	25%	35%	20%	10%	5%	5%

NOTE: This specification table shall be treated as a general guideline for the students and the teachers. The actual distribution of marks in the question paper may vary slightly from above table.

Suggested List of Experiments/Tutorials

Sr. No.	No. Name of Experiment/Tutorial	
1	Solution of Non-linear equation by Newton Raphson Method	
2	Solution of Non-linear equation by Bisection Method	
3	Solution of Gauss Jordan Method	
4	Solution of Iteration Method: Bisection Method and Secant Method	
5	Solution of Regula-Falsi	

Suggested Learning Websites

Sr. No.	Name of Website
1	http://www.numerical-methods.com
2	https://nm.mathforcollege.com

Reference Books

Sr. No.	Name of Reference Books	
1	Numerical Analysis & Algorithms, Pradeep Niyogi, TMH, 1st ed.	
2	Numerical Mathematical Analysis by J.B. Scarborough	
3	Numerical Methods (Problems and Solution) by Jain, Iyengar , & Jain	