Faculty of Computer Science \& Applications Master of Computer Application (MCA)

(W. E. F.: 2023-24)

Document ID: SUTEFCAM-01

Name of Faculty	$:$	Faculty of Computer Science \& Applications
Name of Program	$:$	Master of Computer Application (MCA)
Course Code	$:$	2MNM01
Course Title	$:$	Numerical Methods
Type of Course	$:$	Basic Science
Year of Introduction	$:$	$2023-24$

Prerequisite	$:$	Discrete Mathematics
Course Objective	$:$	This Course will enhance the students ability to think logically and mathematically
Course Outcomes	$:$	At the end of this course, students will be able to:
	CO 1	Demonstrate understanding of common numerical methods and how they are used to obtain approximate solutions to solutions to otherwise intractable mathematical problems.
	CO 2	Apply numerical methods to obtain approximate solutions to mathematical problems.
	CO 3	Analyse and evaluate the accuracy of common numerical methods.

Teaching and Examination Scheme

Teaching Scheme (Contact Hours)			Credits	Examination Marks				
				Practical Marks	Total			
L	T	P		SEE	CIA	SEE	CIA	Marks
3	0	0		70	30	0	0	100

Legends: L-Lecture; T-Tutorial/Teacher Guided Theory Practice; P-Practical, C - Credit, SEE - Semester End Examination, CIA - Continuous Internal Assessment (It consists of Assignments/Seminars/Presentations/MCQ Tests, etc.))

Course Content

Unit No.	Topics	Teaching Hours	Weightage	Mapping with CO
1	Interpolation: Lagrange's Interpolation, Newton's forward \& backward Interpolation Formula. Extrapolation; Newton's Divided Difference Formula; Error; Problems.	8	20%	CO1
	Numerical Differentiation: Use of Newton's forward and backward interpolation formula only. Numerical Integration: Trapezoidal formula (composite); Simson's 1/3rd formula (composite); Romberg Integration (statement only); Problems.	10	25%	CO1

Faculty of Computer Science \& Applications Master of Computer Application (MCA)

(W. E. F.: 2023-24)

Document ID: SUTEFCAM-01

| | Numerical Solution of System of Linear
 Equations:
 Gauss elimination method; Matrix Inversion;
 Operations Count; LU Factorization Method
 (Crout's Method); Gauss-Jordan Method; Gauss-
 Seidel Method; Sufficient Condition of
 Convergence. | 10 | 25% | CO2 |
| :---: | :--- | :--- | :--- | :--- | :--- |
| 4 | Numerical Solution of Algebraic and
 Transcendental
 Iteration Method: Bisection Method; Secant
 Method;
 Regula-Falsi Mathod; Mewton-Raphson | 6 | 15% | CO3 |
| Method. | | | | |

Suggested Distribution of Theory Marks Using Bloom's Taxonomy						
Level	Remembrance	Understanding	Application	Analyse	Evaluate	Create
Weightage	25%	35%	20%	10%	5%	5%

NOTE: This specification table shall be treated as a general guideline for the students and the teachers. The actual distribution of marks in the question paper may vary slightly from above table.

Suggested List of Experiments/Tutorials

Sr. No.	Name of Experiment/Tutorial	Teaching Hours
1	Solution of Non-linear equation by Newton Raphson Method	
2	Solution of Non-linear equation by Bisection Method	
3	Solution of Gauss Jordan Method	
4	Solution of Iteration Method: Bisection Method and Secant Method	
5	Solution of Regula-Falsi	

Suggested Learning Websites

Sr. No.	Name of Website
1	$\underline{\text { http://www.numerical-methods.com }}$
2	$\underline{\text { https://nm.mathforcollege.com }}$

Reference Books

Sr. No.	Name of Reference Books
1	Numerical Analysis \& Algorithms, Pradeep Niyogi, TMH, 1st ed.
2	Numerical Mathematical Analysis by J.B. Scarborough
3	Numerical Methods (Problems and Solution) by Jain, Iyengar , \& Jain

