

Faculty of Engineering & Technology Master of Technology (M. Tech) (W. E. F.: 2023-24)

Document ID: SUTEFETM-01

Name of Faculty	•	Faculty of Engineering & Technology
Name of Program	•	Master of Technology (M. Tech)
Course Code	•	2MPS01
Course Title	•	
	•	Flexible AC Transmission System & HVDC
Type of Course	:	PC
Year of Introduction	:	2023-24

Prerequisite	:	Power Quality Management, Power Electronics			
Course Objective	:	This course aims to understand the operating principles, models			
		and design of various FACTS controllers and their applications			
		in power system and the control aspects of HVDC System.			
Course Outcomes	:	At the end of this course, students will be able to:			
	CO1	To Understand the Modelling, principle of operation and			
		applications of various Shunt and Series FACTS controllers.			
	CO2	To Analyse the Operation of various Shunt devices and their			
		control.			
	CO3	To Analyse the Operation of various Series devices and their			
		control.			
	CO4	To Analyse the different modes of operation for twelve pulse			
		converter unit in the context of HVDC system.			
	CO5	To Understand knowledge about HVDC transmission Systems			
		and its control aspects.			

Teaching and Examination Scheme

Teachin	g Scheme	(Contact	Credits	Examination Marks						
	Hours)		Hours)			Theory	Marks	Practica	l Marks	Total Marks
L	Т	Р	С	SEE	CIA	SEE	CIA			
4	0	2	5	70	30	30	20	150		

Legends: L-Lecture; T-Tutorial/Teacher Guided Theory Practice; P – Practical, C – Credit, SEE – Semester End Examination, CIA - Continuous Internal Assessment (It consists of Assignments/Seminars/Presentations/MCQ Tests, etc.))

Course Content

Unit No.	Topics	Teaching Hours	Weightage	Mapping with CO
1	Introduction to FACTS Reactive power flow control in Power Systems, Control of dynamic power unbalances in Power System, Constraints of maximum transmission line loading, Need of FACTs controller in power system, Transmission line compensation, Uncompensated line -Shunt compensation, Series compensation Phase	10	15%	CO1

Faculty of Engineering & Technology Master of Technology (M. Tech) (W. E. F.: 2023-24)

Document ID: SUTEFETM-01

1				1
	angle control, Reactive power compensation			
	Shunt and Series compensation principles,			
	Reactive compensation at transmission and			
	distribution level.			
	Static Shunt Compensator			
	Static versus passive VAR compensator, Static shunt compensators: SVC and STATCOM,			
2	Operation and control of TSC, TCR and	14	25%	CO2
	STATCOM - Compensator control, Comparison			
	between SVC and STATCOM			
	Static Series Compensator			
	Objectives of Series compensation, Variable			
	impedance type and thyristors switched series			
3	capacitors (TCSC), and switching converter	14	25%	CO3
0	type series compensators, static series		20 /0	000
	synchronous compensator (SSSC), power angle			
	characteristics, basic operating control schemes.			
	HVDC			
	Comparison of AC-DC transmission systems,			
	application of DC transmission, types of DC			
	links, typical layout of HVDC converter station.			
4	HVDC converters, pulse number, analysis of	10	15%	CO4, CO5
	Gratez circuit with and without overlap,			
	converter bridge characteristics, equivalent			
	circuits or rectifier and inverter configurations			
	of twelve pulse converters			
	Converter & HVDC system control			
	Principles of DC link control, Converter control			
	characteristics, System control hierarchy, Firing			
	angle control, Extinction angle control, Starting,			
_	stopping and power flow reversal of DC link,	10	2004	604
5	Power control, Parallel operation of DC link	12	20%	CO4
	with AC transmission line. Converter faults,			
	commutation failure, valve blocking and			
	bypassing. Protection against over currents,			
	over voltages. DC circuit breakers. Reactive Power Control.			
	Power Control.			

Suggested Distribution of Theory Marks Using Bloom's Taxonomy						
Level	Remembrance Understanding Application Analyse Evaluate Create					
Weightage	40	20	20	15	05	0

NOTE: This specification table shall be treated as a general guideline for the students and the teachers. The actual distribution of marks in the question paper may vary slightly from above table.

Faculty of Engineering & Technology Master of Technology (M. Tech) (W. E. F.: 2023-24) Document ID: SUTEFETM-01

Suggested List of Experiments/Tutorials

Sr. No.	Name of Experiment/Tutorial	Teaching Hours
1	To simulate fixed Series and Shunt Compensated line for	2
-	different operating condition.	-
2	To simulate 12-pulse Bridge Converter.	2
3	To Simulate Thyristor Switched Capacitor (TSC).	2
4	To Simulate TSC-TCR model.	2
5	To Simulate Static Var Compensators.	2
6	Evaluate the performance of STATCOM/SVC as a shunt	2
0	compensator.	2
7	To Simulate of Thyristor Controlled Reactor (TCR).	2
	Modeling of Six Pulse / Twelve Pulse Monopolar / Bipolar HVDC	
8	converters with constant voltage / current / power controls by	4
	using MiPower.	
9	Some simulation practices based on HVDC power and voltage	2
フ	stability.	۷
10	Study of DC link control in VSC based HVDC transmission	2
	system.	۷

Major Equipment/ Instruments and Software Required

Sr. No.	Name of Major Equipment/ Instruments and Software
1	Scilab, MATLAB, PSIM etc. along with necessary toolbox
2	Power Electronic Converters
3	CRO/DSO
4	Current/Voltage Probes
5	Isolation transformer

Suggested Learning Websites

Sr. No.	Name of Website
1	https://etap.com/
2	https://electrical-engineering-portal.com/flexible-ac-transmission-system
3	https://nptel.ac.in/courses/108104013
4	https://nptel.ac.in/courses/108107114

Reference Books

Sr. No.	Name of Reference Books
1	K R Padiyar, "FACTS Controllers in Power Transmission and Distribution", New Age
1	InternationalPublishers, 2007
2	R. Mohan Mathur, R K Verma, "Thyristor-based FACTS controllers for Electrical
2	Transmission Systems", Wiley IEEE Press.
3	N.G.Hingorani and L.Gyugyi, "Understanding FACTS", Standard Publishers, Delhi,
3	2001
4	Vijay K Sood, "HVDC and FACTS Controller" Springer Publication, 2004.
5	S Kamakshaiah, V. Kamaraju, "HVDC Transmission systems", The Mc Graw Hill
5	Companies.