

Faculty of Engineering & Technology Master of Technology (M. Tech) (W. E. F.: 2023-24)

Document ID: SUTEFETM-01

Name of Faculty	:	Faculty of Engineering & Technology
Name of Program	:	Master of Technology (M. Tech)
Course Code	:	2MPS04
Course Title	:	Application of Power Electronics to Power System
Type of Course	:	Professional Core (PC)
Year of Introduction	:	2023-24

Prerequisite	:	Advanced Power Electronics		
Course Objective	:	The power electronic devices and converters employing power		
		electronics devices are now widely used in domestic applications		
		as well as in industrial applications like Electrical Drives, Power		
		Systems, Renewable Energy based power generation, heating		
		applications etc. The course is aimed to act as a foundation block		
		and to provide exposure about various aspects (construction,		
		characteristics, operation, ratings etc.) of power electronic devices.		
		It also covers power electronic converters that provide variable DC		
		voltage.		
Course Outcomes	:	At the end of this course, students will be able to:		
	CO1	To Understand the construction and characteristics of Power		
		semiconductor devices and fundamental of thyristors and family.		
	CO2	To Analyse, operate and design ac-to-dc converters.		
	CO3	To Analyse , operate and design dc-to-dc converters.		
	CO4	To Apply the knowledge of power electronic converter for speed		
		control of AC motors.		

Teaching and Examination Scheme

Teachin	g Scheme	(Contact	Credits Examination Marks					
	Hours)			Theory Marks Practical Marks		Total Marks		
L	Т	Р	С	SEE	CIA	SEE	CIA	1 Otal Walks
4	0	2	5	70	30	30	20	150

Legends: L-Lecture; T-Tutorial/Teacher Guided Theory Practice; P – Practical, C – Credit, SEE – Semester End Examination, CIA - Continuous Internal Assessment (It consists of Assignments/Seminars/Presentations/MCQ Tests, etc.))

Faculty of Engineering & Technology Master of Technology (M. Tech) (W. E. F.: 2023-24) Document ID: SUTEFETM-01

Course Content

Unit No.	Topics	Teaching Hours	Weightage	Mapping with CO
1	Power Semiconductor Devices: Construction and Characteristics of Power diodes, Power Transistors, Power MOSFET, Insulated Gate Bipolar transistors (IGBTs) Introduction to Thyristor family: SCR, DIACs, TRIACs, Light Activated SCRs (LASCRs), Reverse Conducting Thyristor, (RCT), Asymmetrical SCR (ASCR), Gate turn-off Thyristors (GTOs), Integrated Gate- Commutated Thyristors (IGCTs), MOS controlled Thyristors (MCTs) Power Integrated circuits (PICs), Intelligent Modules.	06	08 %	CO1
2	Phase Controlled (AC to DC) Converters: Review of half-wave and full-wave diode rectifier (with RL load); Principle of phase controlled converter operation; Operation of 1- phase half wave converter with R, RL and RLE load; Significance of freewheeling diode ; 1- phase full wave converter : Center-tapped and Bridge Configuration; Operation and analysis with R,RL, RLE load; Analysis; Gating Requirements; Conversion (Rectification) and Inversion mode of operation; Operation and analysis of 1-phase Semi-converter/ Half controlled converter: Asymmetric and Symmetric Configurations; 3-phase converters : Operation of half wave converter; Full wave fully controlled converters: Analysis and operation with different type of loads; Rectification and Inversion Mode; Semi- controlled converter; Dual Converter: Principle and operation; 1-phase and 3-phase configurations; Simultaneous and Non- simultaneous operation Effect of source and load inductances, Power factor improvement techniques, Applications of AC-DC converters.	12	20 %	CO2
3	DC to DC Converters: The chopper, Basic principle of DC chopper, Classification of DC choppers, Control strategies Basic DC-DC converter (switch	10	16 %	CO3

Faculty of Engineering & Technology Master of Technology (M. Tech) (W. E. F.: 2023-24)

Document ID: SUTEFETM-01

			1	I
	regulator) topologies: Principle, operation and			
	analysis for Step-down (Buck), Step-up (Boost),			
	Step up/down (Buck-Boost), Continuous			
	conduction and Discontinuous conduction			
	operation Chopper configurations: Voltage			
	Commutated, Current Commutated, Load			
	Commutated Chopper Multi-phase chopper,			
	Application of DC-to-DC converters.			
	DC Drives with DC-DC Converters:			
	Principle of power control (motoring control) of			
	separately excited and series motor with DC-			
	DC Converter; Steady- state analysis Principle			
	of Regenerative Braking; Chopper			
4	configuration for Regenerative braking;	06	08 %	CO3, CO4
	Analysis for minimum and maximum speed for			
	Regenerative Braking; Combined regenerative			
	and rheostatic brake control; Two and four			
	quadrant DC-DC converter drives.			
	DC to AC Converters - Inverters:			
	1			
	Classification of Inverters: Voltage source			
	inverters and Current source inverters; Single			
	phase inverters: series, parallel and bridge type			
	(Half wave and Full wave) inverters; Forced			
	Commutated, Line commutated and Self-			
	Controlled Switches based Inverters; Three			
	phase bridge inverters: 180 degree conduction,			
	120 degree conduction and their comparison			
5	PWM Inverters: Principle of PWM control,	18	32 %	CO3
J	PWM techniques classifications, Unipolar and	10	32 /0	000
	Bipolar PWM, Effect of Switching frequency on			
	Harmonic Spectrum, Sinusoidal PWM, Third			
	harmonic PWM, Selective Harmonic			
	Elimination, Hysteresis band current control			
	PWM, Space vector pulse width modulation			
	technique, Comparison of PWM techniques,			
	Voltage and frequency control of single phase			
	and three-phase inverters, Harmonic			
	Cancellation techniques Gating circuits for			

Faculty of Engineering & Technology Master of Technology (M. Tech) (W. E. F.: 2023-24)

Document ID: SUTEFETM-01

	Cycloconverters:			
	Introduction; Basic Principle; Single to single-			
	phase cycloconverters; Three-phase half-wave			
(cycloconverters; Cycloconverters for three	00	1 < 0/	604
6	phase output; Output voltage equation; Output	08	16 %	CO4
	harmonics in cycloconverter; Comparison			
	between cycloconverter and DC link Converter;			
	Load Commutated cycloconverter.			

Suggested Distribution of Theory Marks Using Bloom's Taxonomy						
Level	Remembrance	Understanding	Application	Analyse	Evaluate	Create
Weightage	20	25	20	20	10	05

NOTE: This specification table shall be treated as a general guideline for the students and the teachers. The actual distribution of marks in the question paper may vary slightly from above table.

Suggested List of Experiments/Tutorials

Sr. No.	Name of Experiment/Tutorial	Teaching Hours
1	Static and dynamic characteristics of an SCR.	02
2	Output characteristics and transfer characteristics of Power MOSFET.	02
3	Performance 1- Φ semi-converter & 1- Φ fully controlled (bridge) converter with R and RL load.	02
4	Time ratio control for regulating the output voltage of a step-down chopper.	02
5	Time ratio control for regulating the output voltage of a step-up chopper.	02
6	Performance of three phase fully controlled and half-controlled converter with R and R-L load.	02
7	Speed control of DC separately excited motor with phase- controlled converter or DC-DC converter.	02
8	Harmonic spectrum of output voltage for unipolar and bipolar PWM controlled half-bridge and full bridge converter.	02
9	Performance of V/F controlled induction motor drive.	02
10	Simulation of 1-phase bridge type cycloconverter in MATLAB.	02

Major Equipment/ Instruments and Software Required

Sr. No.	Name of Major Equipment/ Instruments and Software
1	MATLAB / Simulink
2	PSCAD
3	ORCAD

Suggested Learning Websites

Sr. No.	Name of Website
1	www.vlabs.co.in
2	www.powerind.in

Reference Books

Sr. No.	Name of Reference Books
1	M D Singh and K. B. Khanchandani, "Power electronics", TMH, New Delhi, 2nd ed.,
1	2007.
2	Muhammad H. Rashid, "Power Electronics - Circuits, Devices and Applications",
2	Prentice Hall of India, 3rd ed., 2003.
3	P. S. Bimbhra, "Power Electronics", Khanna Publishers, New Delhi, 2012.
4	V. R. Moorthi, "Power Electronics", Oxford University press, 2005.

Faculty of Engineering & Technology Master of Technology (M. Tech) (W. E. F.: 2023-24) Document ID: SUTEFETM-01