

Faculty of Engineering & Technology Master of Technology (M. Tech) (W. E. F.: 2023-24)

Document ID: SUTEFETM-01

Name of Faculty	:	Faculty of Engineering & Technology
Name of Program	:	Master of Technology (M. Tech)
Course Code	:	2MPS05
Course Title	:	Power System Dynamics
Type of Course	:	Professional Core (PC)
Year of Introduction	:	2023-24

Prerequisite	:	Power system Dynamics & Control		
Course Objective	:	The Dynamics of the power system and its control is becoming		
		more and more complicated due to the increase in power system		
		complexity. Under this scenario, this syllabus includes various		
		types of stability issues with its improving techniques. This subject		
		is the main source for research point of view as further studies of		
		electrical engineering. In this context, this subject deals with the		
		fundamentals of the dynamics of the power system and its control		
		of the power system.		
Course Outcomes	:	At the end of this course, students will be able to:		
	CO1	To Understand the fundamental dynamic behaviour of power		
		systems to perform basic stability issues		
	CO2	To Remember fundamental knowledge about the modelling of		
		synchronous machines		
	CO3	To Evaluate the dynamic performance of power systems		
	CO4	To Understand the power system stability and controls.		

Teaching and Examination Scheme

Teaching Scheme (Contact		Credits		Exa	amination	Marks		
Hours)			Theory	Marks	Practica	l Marks	Total	
L	Т	Р	С	SEE	CIA	SEE	CIA	Marks
3	0	2	4	70	30	30	20	150

Legends: L-Lecture; T-Tutorial/Teacher Guided Theory Practice; P – Practical, C – Credit, SEE – Semester End Examination, CIA - Continuous Internal Assessment (It consists of Assignments/Seminars/Presentations/MCQ Tests, etc.))

Course Content

Unit No.	Topics	Teaching Hours	Weightage	Mapping with CO
1	Basic Concepts and Review of Classical Methods: Power System Stability, States of Operation and System Security, System Dynamic Problems, Current Status, and Recent Trends, Analysis of Steady State Stability Analysis of Transient	08	18%	CO1

Faculty of Engineering & Technology Master of Technology (M. Tech) (W. E. F.: 2023-24)

Document ID: SUTEFETM-01

	Stability, Simplified Representation of			
	Excitation Control			
	Modelling of Synchronous Machine:			
	Introduction, Synchronous Machine, Park's			
	Transformation, Analysis of Steady State			
2	Performance Per Unit Quantities, Equivalent	12	26%	CO2
2	Circuits of Synchronous Machine,	12	20 /0	002
	Determination of Parameters of Equivalent			
	Circuits, Measurements for Obtaining Data,			
	Transient Analysis of a Synchronous Machine			
	Excitation and Prime Mover Controllers			
	Excitation System, Excitation System			
3	Modelling, Excitation Systems-Standard Block	10	22%	CO4
	Diagram, System Representation by State			
	Equations, Prime-Mover Control System			
	Transmission Lines, SVC, and Loads			
4	Transmission Lines, D-Q Transformation using	08	18%	CO3
	α - β Variables, Loads			
	Dynamics of a Synchronous Generator			
	Connected to Infinite Bus			
5	System Model, Synchronous Machine Model	07	16%	CO3
	Application of Model, Calculation of Initial			
	Conditions.			

Suggested Distribution of Theory Marks Using Bloom's Taxonomy						
Level	Remembrance	Understanding	Application	Analyse	Evaluate	Create
Weightage	20	25	10	30	15	0

NOTE: This specification table shall be treated as a general guideline for the students and the teachers. The actual distribution of marks in the question paper may vary slightly from above table.

Suggested List of Experiments/Tutorials

Sr. No.	Name of Experiment/Tutorial	Teaching Hours
1	To study mathematical modeling of 3rd order differential equation	02
2	To study mathematical modeling of R-L, R-L-C, and complex electrical circuits using MATLAB.	02
3	To study short circuit analysis of overhead transmission line using MATLAB	02
4	To study and determine fault current for short circuit analysis using ETAP software	02
5	Find the steady-state stability limit of delivered power	02
6	Compute the equivalent circuit parameters using (a) exact calculation and (b) approximate method	02

Faculty of Engineering & Technology Master of Technology (M. Tech) (W. E. F.: 2023-24) Document ID: SUTEFETM-01

7	Calculate the equivalent circuit parameters for the d-axis using (a) standard method (b) Exact method with the assumption Xc = Xau (c) Exact method	02
8	Obtain the response of the excitation system	02
9	Obtain the hybrid parameters for the two-port network	02
10	Study of basic elements of power system and its control	02

Major Equipment/ Instruments and Software Required

Sr. No.	Name of Major Equipment/ Instruments and Software
1	MATLAB
2	ETAP
3	Power world simulator
4	PSAT (MATLAB open source)
5	SCILAB (http://old.cloud.scilab.in/)

Suggested Learning Websites

Sr. No.	Name of Website
1	www.nptel.com
2	https://nptel.ac.in/courses/108/101/108101004/
3	https://a-lab.ee/projects/dq0-dynamics
4	https://ieeexplore.ieee.org/document/1490569

Reference Books

Sr. No.	Name of Reference Books
	P.M. Anderson and A.A.Fouad, "Power System Control and Stability", Galgotia
1	Publications, New Delhi, 2003 or P.M. Anderson and A. A. Fouad, "Power system control
	and stability", IEEE Press
2	R. Ramanujam, "Power Systems Dynamics" - PHI Publications
3	M.A.Pai and W.Sauer, "Power System Dynamics and Stability", Pearson Education Asia,
5	India, 2002.
4	P. Kundur, "Power system stability and control", McGraw Hill Inc, New York, 1995
5	K.R.Padiyar, "Power System Dynamics, Stability & Control", BS Publications,
	Hyderabad - 500 095 - AP., Second Edition, 2008.