

Faculty of Science Master of Science (M.Sc.) (W. E. F.: 2023-24) Document ID: SUTEFSCM-01

Name of Faculty	:	Faculty of Science	
Name of Program	:	Master of Science	
Course Code	:	2MSB01	
Course	:	Recombinant DNA Technology	
Type of Course	:	Professional Core	
Year of Introduction	:	2023-24	

Proroquisito		To obtain anhanced and desired characteristics in living organisms					
Tierequisite	·	10 obtain ennanced and desired characteristics in inving organisms					
		or their products					
Course Objective	:	To illustrate creative use of modern tools and techniques for					
		manipulation and analysis of genomic sequences.					
		Recombinant DNA has become a crucial research tool for molecular					
		biology, biochemistry and the life sciences cluster in general.					
		Recombinant DNA is used to gain deeper knowledge of disease					
		formation and hence the development of cures.					
Course Outcomes	:	At the end of this course, students will be able to:					
	CO1	A sound knowledge on methodological repertoire using enzymes					
		allows students to innovatively apply these in basic and applied					
		fields of biological research.					
	CO2	2 To expose students to application of recombinant DNA technolog					
		in biotechnological research.					
	CO3	To illustrate creative use of modern tools and techniques for					
		manipulation and analysis of genomic sequences.					
	CO4	students will be familiarized to annotation of DNA sequences for					
		efficient design, tracking and evaluate cloning experiments in the					
		laboratory					

Teaching and Examination Scheme

Teaching Scheme		Credits	Examination Marks					
(Contact			Theory Marks		Practical Marks		Total marks	
Hours)								
L	Т	Р	С	SEE	CIA	SEE	CIA	
4	0	0	4	70	30	0	0	100

Legends: L-Lecture; T-Tutorial/Teacher Guided Theory Practice; P – Practical, C – Credit, SEE – Semester End Examination, CIA - Continuous Internal Assessment (It consists of Assignments/Seminars/Presentations/MCQ Tests, etc.

Faculty of Science Master of Science (M.Sc.) (W. E. F.: 2023-24) Document ID: SUTEFSCM-01

Course Content

Unit No.	Topics	Teaching Hours	Weightage	Mapping with Cos
1	Scope of Genetic Engineering Concept and importance of Genetic Engineering; General strategies and Steps involved in gene cloning; Extraction and purification of DNA from bacteria, plant and animal cells. Restriction enzymes, DNA ligase and other enzymes involved in gene cloning; mRNA and cDNA preparation.	10	23%	CO1
2	Chemical synthesis of gene/DNA -bacteriophages, M-13 based vectors, Phagemids. Plasmids, Cosmids, YAC, BAC, HAC/MAC, etc. Expression of cloned gene in heterologous host. Intro duction of DNA into different host systems	10	23%	CO2
3	Pulse Field Gel Electrophoresis, Rotating Gel Electrophoresis (RGE), PAGE, SDS-PAGE, Isoelectric Focusing, Two dimensional and Capillary Gel Electrophoresis. Mapping Activity Assay – Yeast-one hybrid, Yeast-two hybrid and Yeast-three hybrid system, Subtractive hybridization and cloning, HRT/HART. Restriction map, SI mapping, Denaturation mapping, Heterologous mapping DNA sequencing	12	25%	CO3
4	PCR- Molecular markers Linkage mapping using meiotic recombination frequencies. Genomic mapping using DNA sequence polymorphism as genetic markers Invitro Mutagenesis, Metagenomics, Metabolic engineering Gene therapy Transgenic plants and Transgenic animals	13	29%	CO4, CO2

Suggested Distribution of Theory Marks Using Bloom's Taxonomy						
Level	Remembrance	Understanding	Application	Analyse	Evaluate	Create
Weightage	0	25	25	25	25	0

NOTE: This specification table shall be treated as a general guideline for the students and the teachers. The actual distribution of marks in the question paper may vary slightly from above table.

Major Equipment / Instruments

Sr. No.	Name of Major Equipment/Instruments and Software
1	Analytical Balance
2	Autoclave
3	Micropipettes
4	Stains
5	Light Microscope
6	Anaerobic jar
7	UV Chamber
8	Hot Air Oven
9	Centrifuge
10	Electrophoresis
11	SDS PAGE
12	PCR
13	Deep Freezer
`14	Autoradiography

Suggested Learning Websites

Sr. No.	Name of Website
1	https://www.ncbi.nlm.nih.gov/books/NBK9950

Reference Books

Name of Reference Books
M. R. Green, J. Sambrook. Molecular Cloning: A Laboratory Manual (Cold Spring Harbor, ed.
4, 2012).
M. Wink. An Introduction to Molecular Biotechnology: Molecular Fundamentals, Methods
and Applications in Modern Biotechnology (Wiley, ed. 2, 2011)
S. B. Primrose, R. Twyman. Principles of Gene Manipulation and Genomics (Wiley-Blackwell,
ed. 7, 2006).
B. R. Glick., et al. Molecular Biotechnology: Principles & Applications of Recombinant DNA
(ASM Press, ed. 4, 2009).
M. M. Burell. Enzymes of Molecular Biology (Humana Press, 1993).
K. Wilson, J. Walker. Principles and Techniques of Biochemistry and Molecular Biology
(Cambridge University Press, ed. 7, 2010).