

Faculty of Science Master of Science (M.Sc.) (W. E. F.: 2023-24) Document ID: SUTEFSCM-01

Name of Faculty	:	Faculty of Science
Name of Program	:	Master of Science
Course Code	:	2MSB04
Course	:	Bioprocess and Biochemical engineering
Type of Course	:	Professional Core
Year of Introduction	:	2023-24

Prerequisite	:	Helps to develop the skills in bioengineering processes			
Course Objective	:	Optimizing the system using biological materials to manufacture			
		variety of biological products			
		Learning the fundamentals of bioreactor design and engineering			
		with a solid understanding regarding the deisgn and operation			
		fermentation processes.			
		Develop skills in bioengineering to create and purify biochemical			
		products using integrated biochemical processes.			
Course Outcomes	:	At the end of this course, students will be able to:			
	CO1	Able to acquire a sound knowledge in mathematics and natural			
		science and apply engineering principles in determining and solving			
		contemporary and complex problems related to bioprocessing.			
	CO2	Able to communicate creative idea and works effectively within			
		professional community and larger society.			
	CO3	Able to conduct practice-based tasks related to bioprocessing in a			
		responsible, safe, voluntary, self-motivated and ethical manner.			
	CO4	Able to demonstrate an ability to work in multidisciplinary and			
		multicultural teams in developing innovative engineering solutions			
	CO5	Able to design biological reaction and reactors including its			
	005	materials, instrumentation, control, and modeling.			
	CO6	Application of principles and techniques to the study and utilization			
		of microorganisms and their products.			

Teaching and Examination Scheme

Teaching Scheme		Credits	Examination Marks					
(Contact			Theory Marks		Practical Marks		Total marks	
	Hours)							
L	Т	Р	С	SEE	CIA	SEE	CIA	
4	0	0	4	70	30	0	0	100

Faculty of Science Master of Science (M.Sc.) (W. E. F.: 2023-24) Document ID: SUTEFSCM-01

Legends: L-Lecture; T-Tutorial/Teacher Guided Theory Practice; P – Practical, C – Credit, SEE – Semester End Examination, CIA - Continuous Internal Assessment (It consists of Assignments/Seminars/Presentations/MCQ Tests, etc.

Course Content

Unit No.	Topics	Teaching Hours	Weightage	Mapping with COs
1	Introduction to bioprocess technology. Isolation methods (mutants) Preservation (cryopreservation, lyophilization) Improvement of industrially important organisms - Strain Improvement, software that are used.	15	25%	CO3
2	Bioreactor design: Laboratory, pilot and large scale reactors. Plug flow reactors, enzyme reactors. Sterilization of media and air. Scaleup and Scaledown. Mass transfer of oxygen : Agitation and aeration, Determination of KLa, factors affecting KLa, fluid rheology. Inoculum development, aseptic inoculation and sampling	15	25%	CO1
3	Bioprocess kinetics: Kinetics of growth and substrate utilization in batch, fed batch and continuous systems. Control of process parameters: Instrumentation for monitoring bioreactor and fermentation processes, Sensors, Controllers, fermentation control systems and architecture, Incubation and sequence control, advanced control. Dynamic modeling of fermentation processes.	15	25%	CO5 CO6
4	Downstream processing: Methods of Cell separation, Disruption and product purification. Fermentation Economics, pollutants: Petroleum hydrocarbons and pesticides. Microbes and mineral recovery: Bioleaching of copper, gold and uranium.	15	25%	CO2, CO3

Suggested Distribution of Theory Marks Using Bloom's Taxonomy						
Level	Remembrance	Understanding	Application	Analyse	Evaluate	Create
Weightage	-	16.68	66.64	-	-	16.68

NOTE: This specification table shall be treated as a general guideline for the students and the teachers. The actual distribution of marks in the question paper may vary slightly from above table.

Faculty of Science Master of Science (M.Sc.) (W. E. F.: 2023-24) Document ID: SUTEFSCM-01

Major Equipment / Instruments

Sr. No.	Name of Major Equipment/ Instruments and Software
1	Analytical Balance
2	Autoclave
3	Micropipettes
4	Stains
5	Light Microscope
6	Anaerobic jar
7	UV Chamber
8	Hot Air Oven
9	Centrifuge
10	Electrophoresis
11	SDS PAGE
12	PCR
13	Deep Freezer
`14	Autoradiography
software	Software: Bio4C Tm Processpad software

Suggested Learning Websites

Sr. No.	Name of Website
1	https://www.wur.nl/en/research-results/chair-groups/agrotechnology-and-food-
	sciences/bioprocess-engineering.html

Reference Books

Sr. No.	Name of Reference Books
1	Principles of Fermentation Technology: Whitekar & Stanbury
2	Comprehensive Biotechnology Murray Moo
3	Fermentation Microbiology and Biotechnology, El Mansi and Bryc