
Document Version: 1.0 Page 1 of 5

Faculty of Engineering & Technology
Master of Technology (M. Tech)
(W. E. F.: 2023-24)
Document ID: SUTEFETM-01

Name of Faculty : Faculty of Engineering & Technology

Name of Program : Master of Technology (M. Tech)

Course Code : 2MSE02

Course Title : Advanced Compiler Design (PE - II)

Type of Course : PE

Year of Introduction : 2023-24

Prerequisite : Compiler Design Basics and Data Structure Algorithm

Course Objective : The course objectives for an Advanced Compiler Design course may

vary depending on the institution and the instructor's preferences.

However, here are some common objectives you might find in

such a course: Explore Advanced Compiler Techniques, Study

Compiler Optimization, Understand Language Semantics and

Analysis, Investigate Just-In-Time (JIT) Compilation, Study

Compiler Backends and Code Generation etc.
Course Outcomes : At the end of this course, students will be able to:

CO1 Specify and analyse the lexical, syntactic and semantic structures

of advanced language features.

CO2 Separate the lexical, syntactic and semantic analysis into meaningful

phases for a compiler to undertake language translation.

CO3 Write a scanner, parser, and semantic analyser without the aid of

automatic generators.

CO4 Turn fully processed source code for a novel language into

machine code for a novel computer.
CO5 Describe techniques for intermediate code and machine code

optimization.
 CO6 Design the structures and support required for compiling

advanced language features.

Teaching and Examination Scheme

Teaching Scheme (Contact

Hours)

Credits Examination Marks

Theory Marks Practical Marks Total

Marks L T P C SEE CIA SEE CIA

4 0 2 5 70 30 30 20 100

Legends: L-Lecture; T–Tutorial/Teacher Guided Theory Practice; P – Practical, C – Credit, SEE – Semester

End Examination, CIA - Continuous Internal Assessment (It consists of

Assignments/Seminars/Presentations/MCQ Tests, etc.))

Document Version: 1.0 Page 2 of 5

Faculty of Engineering & Technology
Master of Technology (M. Tech)
(W. E. F.: 2023-24)
Document ID: SUTEFETM-01

Course Content

Unit No.

Topics
Teaching

Weightage
Mapping

Hours with CO

1

Language Translation Overview

Overview of system software used during

translation –language processors, linker, loader.

Types of language processors –assembler,

06

05%

CO2
interpreter, compiler. Difference between
interpreter, assembler and compiler. Overview
and use of linker and loader, model of

compilation, The Phases of a Compiler, The

Grouping of Phases, Compiler-Construction Tools

2

Lexical Analysis

09

14%

CO1

The Role of the Lexical Analyser, regular
expression, regular languages, Input Buffering,

Specification of Lexemes, Tokens and pattern.
Recognition of Tokens, A Language for
Specifying Lexical Analysers, Finite Automata,
From a Regular Expression to an NFA, Design of

a Lexical Analyser Generator, Optimization of

DFA-Based Pattern Matchers.

3

Syntax Analysis

15

23%

CO2

The Role of the Parser, Context-Free Grammars,

writing a Grammar, Top-Down Parsing, Bottom-

Up Parsing, Operator-Precedence Parsing, LR

Parsers, Using Ambiguous Grammars, Parser

Generators.

4

Syntax-Directed Translation

05

08%

CO3

Syntax-Directed Definitions, Construction of

Syntax Trees, Bottom- Up Evaluation of S-
Attributed Definitions, L-Attributed
Definitions, Top-Down Translation, Bottom-Up
Evaluation of Inherited Attributes, Recursive
Evaluators, Analysis of Syntax-Directed
Definitions, Type Systems, Specification of a
Simple Type Checker, Equivalence of Type

Expressions, Type Conversions, Overloading of

Functions and Operators.

5

Memory Allocation, Organization and Memory
Management
Source Language Issues, Storage Organization,

Storage-Allocation Strategies, and Access to Non

local Names, Parameter Passing, and Language

07

14%

CO4
Facilities for Dynamic Storage Allocation,
Dynamic Storage Allocation Techniques.
Activation Tree, Activation Record, Parameter
Passing, Symbol Table, Static, Dynamic And

Document Version: 1.0 Page 3 of 5

Faculty of Engineering & Technology
Master of Technology (M. Tech)
(W. E. F.: 2023-24)
Document ID: SUTEFETM-01

 Heap Storage Allocation, Garbage Collection.

6

Intermediate Code Generation

05

08%

CO5

Intermediate Languages, Declarations,
Assignment Statements, Boolean Expressions,
Case Statements, Back patching, Procedure

Calls, Types of Intermediate Forms of the

Program.

7

Code Optimization

06

08%

CO5

The Principal Sources of Optimization,
Optimization of Basic Blocks, Loops in Flow
Graphs, Introduction to Global Data-Flow
Analysis, Iterative Solution of Data-Flow
Equations, Linear optimization (peep hole)
Techniques, parse optimization Techniques

and structured optimization techniques. Code-
Improving Transformations, Dealing with
Aliases, Data-Flow Analysis of Structured Flow
Graphs, Efficient Data-Flow Algorithms, A

Tool for Data-Flow Analysis, Estimation of Types,

Symbolic Debugging of Optimized Code

8

Code Generation

04

08%

CO6

Issues in the Design of a Code Generator, The
Target Machine, Run- Time Storage
Management, Basic Blocks and Flow Graphs,
Next-Use Information, A Simple Code
Generator, Register Allocation and Assignment,
The DAG Representation of Basic Blocks,

Peephole Optimization, Generating Code from
DAGs, Dynamic Programming Code-
Generation Algorithm, Code-Generator
Generators.

9

Symbol Table Management

General concepts, Symbol Table as a data structure,

Various operations performed on Symbol Table,

Symbol table organizations for blocked structured

language and non-blocked structured language.

05

12%

CO6

Suggested Distribution of Theory Marks Using Bloom's Taxonomy

Level Remembrance Understanding Application Analyse Evaluate Create

Weightage 40 20 20 10 - 10

NOTE: This specification table shall be treated as a general guideline for the students and the teachers. The

actual distribution of marks in the question paper may vary slightly from above table.

Document Version: 1.0 Page 4 of 5

Faculty of Engineering & Technology
Master of Technology (M. Tech)
(W. E. F.: 2023-24)
Document ID: SUTEFETM-01

Suggested List of Experiments/Tutorials

Sr. No.

Name of Experiment/Tutorial
Teaching

Hours
1 Importance/Rationale behind the CD Lab. 01

2 Objectives & Outcomes. 01

3 Software / Hardware Requirements. 01

4
Case Study: Description of the Syntax of the source Language (mini

language) for which the compiler components are designed.

02

5
Write a C Program to Scan and Count the number of characters,

words, and lines in a file.

02

6
Write a C Program to implement NFAs that recognize identifiers,

constants, and operators of the mini language.

02

7
Write a C Program to implement DFAs that recognize identifiers,

constants, and operators of the mini language.

02

8
Design a lexical analyzer for the given language. The lexical analyzer
should ignore redundant spaces, tabs and new lines, comments etc.

01

9
Implement the lexical analyzer using JLex, flex or other lexical

analyzer generating tools.

01

10 Design Predictive Parser for the given language. 02

11 Design a LALR bottom up parser for the given language. 01

12
Convert the BNF rules into Yacc form and write code to generate

abstract syntax tree.

01

13
A program to generate machine code from the abstract syntax tree

generated by the parser.

01

Suggested Learning Websites

Sr. No. Name of Website

1

http://compilers.iecc.com/crenshaw

2

http://www.compilerconnection.com

3

http://dinosaur.compilertools.net

4

http://pltplp.net/lex-yacc

Reference Books

Sr. No. Name of Reference Books

1

Rich, Craig A. Advanced Compiler Design--CS 441 Lecture Notes, Spring
001(Available at Bronco Copy 'n Mail in the University Union).

2 Allen I. Holub “Compiler Design in C”, Prentice Hall of India.

3

C. N. Fischer and R. J. LeBlanc, “Crafting a compiler with C”, Benjamin Cummings.

4
J.P. Bennet, “Introduction to Compiler Techniques”, Second Edition, Tata McGraw- Hill.

5
Henk Alblas and Albert Nymeyer, “Practice and Principles of Compiler Building with
C”, PHI.

http://compilers.iecc.com/crenshaw
http://www.compilerconnection.com/
http://dinosaur.compilertools.net/
http://pltplp.net/lex-yacc

Document Version: 1.0 Page 5 of 5

Faculty of Engineering & Technology
Master of Technology (M. Tech)
(W. E. F.: 2023-24)
Document ID: SUTEFETM-01

6
Kenneth C. Louden, “Compiler Construction: Principles and Practice”, Thompson
Learning.

7 Compiler Construction by Kenneth. C. Louden, Vikas Pub.

