

(W. E. F.: 2023-24)

Document ID: SUTEFSCM-01

Name of Faculty	:	Faculty of Science
Name of Program	:	Master of Science
Course Code	:	2MSO01
Course Title	:	Inorganic Chemistry
Type of Course	:	Basic Science
Year of Introduction	:	2023-24

Prerequisite	:	Knowledge about basics of quantum mechanics and complexes.			
Course Objective	:	Inorganic chemistry aims to impart to the student, knowledge of postulates of quantum theory and advanced theories of bonding in complexes along with their stereochemistry. Mechanisms of substitution reactions involving coordination compounds.			
Course Outcomes	:	At the end of this course, students will be able to:			
	CO1	Understand modern methods of electronic structure			
	CO2	Apply symmetry to know geometry, similarity, equality, periodicity, harmony order and order of molecule.			
	CO3	Analyze formation as well as uses of organometallic compounds of transition elements.			
	CO4	Learn mechanism and kinetics of substitution reaction in square planar complexes			

Teaching and Examination Scheme

Teaching Scheme (Contact		Credits	Examination Marks					
	Hours)			Theory Marks Practical Marks		Total		
L	T	P	С	SEE	CIA	SEE	CIA	Marks
4	0	0	4	70	30	-	-	100

Legends: L-Lecture; T-Tutorial/Teacher Guided Theory Practice; P- Practical, C - Credit, SEE - Semester End Examination, CIA - Continuous Internal Assessment (It consists of Assignments/Seminars/Presentations/MCQ Tests, etc.

Course Content

Unit No.	Topics	Teaching Hours	Weightage	Mapping With COs
	Quantum Chemistry:			
1	Quantum theory and Atomic Structure Postulates of			
	quantum mechanics, setting up of different	15	25%	CO1
	observables, eigen value of angular momenta and			
	commutation relations, step-up and step-down			
	operators, angular momenta in many electron atoms.			

(W. E. F.: 2023-24)
Document ID: SUTEFSCM-01

	Ta			
	Schrodinger wave equation and applications:			
	particle on a ring and the simple harmonic oscillator.)			
	equations, quantum numbers, $\varphi(\phi)$ and $\theta(\theta H-atom)$			
	wave functions, solutions of R(r) angular and radial			
	wave function, shapes of the orbitals, angular			
	momentum of inner quantum number j, physical			
	interpretation of hydrogenic orbitals; space			
	quantization of electronic orbits; electron spin.			
	1-			
	Approximation methods: Variation method and			
	application to H atom. Perturbation theory (first order			
	and non-degenerate, application to the Helium atom.			
	Application of symmetry:			
2	Application of symmetry to hybrid orbital, molecular			
	orbitals, hybridization schemes for bonding and			
	molecular orbital for ABn type of molecules. π			
	orbitals, σ Application of symmetry to molecular	15	25%	CO2
	vibrations, interpretation of IR and Raman spectral			
	data.			
	Organometallic Compounds:			
	Organometallic compounds of transition elements,			
3	stability of metal carbon bond in bondingπcomplexes.			
	Synthesis, uses and structure of organometallic			
	compounds of organic ligands, 2-electron ligands,			
	olifinic and acetylinic complexes, compound with 3			
	electron ligand - allylic complexes, compounds. With			
	4 - electron ligands butadiene complexes, n4	15	25%	CO3
	complexes of cyclopentadiene, compounds with 5			
	electron ligands - cyclopantadionyl, compounds with			
	6 electron ligands, n6 complexes of benzene and its			
	derivatives. Role of organometallic compounds in			
	catalytic reaction.			
	Reaction Mechanism:			
4	Mechanism of substitution reaction in square planar			
	complexes. Kinetics of substitution reaction of			
	platinum (II) complexes Effect of leaving group,			
	effect of charge, steric effect, solvent effect, effect of			
	nucleophile, effect of tempeature and other effects.			
	Oxidation-Reduction reaction, electron transfer,			
	tunnelling effect, Marcus -Hush theory, one and two	15	25%	CO4
	electron transfer inner sphere and outer sphere,			
	effect of ions on rate, electron transfer through			
	extended bridges, unstable oxidation states,			
	hydrated electron.			
				l .

(W. E. F.: 2023-24)

Document ID: SUTEFSCM-01

Suggested Distribution of Theory Marks Using Bloom's Taxonomy						
Level	Remembrance	Understanding	Application	Analyse	Evaluate	Create
Weightage	25	25	25	25	-	-

NOTE: This specification table shall be treated as a general guideline for the students and the teachers. The actual distribution of marks in the question paper may vary slightly from above table.

Suggested Learning Websites

Sr.	Name of Website
No.	
1	https://chem.libretexts.org/Bookshelves/Inorganic_Chemistry/Inorganic_Chemistry_(LibreText
	s)/12%3A_Coordination_Chemistry_IVReactions_and_Mechanisms/12.06%3A_Substitutions_i
	n_Square_Planar_Complexes/12.6.01%3A_Kinetics_and_Stereochemistry_of_Square_Planar_Reac
	tions
2	https://chem.libretexts.org/Bookshelves/Inorganic_Chemistry/Inorganic_Chemistry_(LibreTexts)/04%3A
	_Symmetry_and_Group_Theory/4.04%3A_Examples_and_Applications_of_Symmetry

Reference Books

Sr. No.	Name of Reference Books
1	Introduction to Quantum Chemistry, A. K. Chandra, Tata MacGraw Hill
2	Quantum Chemistry, Ira N. Levine, Prentice Hall
3	Quantum Chemistry by R. K. Prasad, New Age International Publishers (1985)
4	Elementary Quantum Chemistry by D. L. Pilar, Mc Graw Hill Book Co, New York (1968)
5	Molecular Quantum Mechanics, Third Edition, P. W. Atkins and R.S. Friedman 8. Group
	theory and symmetry in chemistry, L. H. Hall(McGraw Hill)
6	D. A. McQuarrie Quantum Chemistry, OUP 1983
7	M. W. Hanna, Quantum Mechanics in Chemistry, The Benjamin Pub.
8	Group theory and symmetry in chemistry, L. H. Hall(McGraw Hill)
9	Coulson's Valence, R. McWeeny, ELBS
10	F. A. Cotton, Chemical Applications of Group theory, Wiley Eastern 2nd Edn.1992
11	V. Ramkrishnan & M. S. Gopinadhan, Group theory in Chemistry Vishal Pub.1996.
12	Inorganic Chemistry, Third Edition, Alan G. Sharpe 12. Theoretical Inorganic Chemistry, M.
	C. Day, J. Shellin
13	Chemistry, Fifth Edition, John E. McMurry, Robert C. Fay
14	An Introduction to Theoretical Chemistry, Jack Simons, Cambridge
15	Progress in inorganic Chemistry, Vols 18 and 38 ed. J. J. Lippard, Wiley.
16	Mechanism of Inorganic Reactions, F. Basolo and R. G. Persons, Wiley Pub.
17	Reaction Mechanism of Coordination Compounds, C. H. Langford and H. B. Gray.
18	Inorganic Reaction Mechanisms, M. L. Tobe, Nelson Pub.
19	Inorganic Chemistry, K. F. Purcell and J. C. Kotz.
20	Principles of Bioinorganic Chemistry, S. J. Lippard and J. M. Berg
21	Mehrotra R. C. and Singh A. Organo Metallic Chemistry, Willey Eastern Ltd., New Delhi

DocumentVersion:1.0

(W. E. F.: 2023-24)

Document ID: SUTEFSCM-01

Coates G. E. Green MIH Wade, K and Aylett B. J. Organo Metallic Compounds Chapman and Hall, London