

Faculty of Science Master of Science (M.Sc.) (W. E. F.: 2023-24) Document ID: SUTEFSCM-01

Name of Faculty	:	Faculty of Science
Name of Program	:	Master of Science
Course Code	:	2MSO03
Course Title	:	Physical Chemistry
Type of Course	:	Basic Science
Year of Introduction	:	2023-24

Prerequisite	:	Previous knowledge of surface tension, probability and radioactivity.		
Course Objective	:	Physical Chemistry is the application of physical principles and measurements to understand the properties of matter, as well as for the development of new technologies for the environment, energy and medicine. It includes theoretical and computational tools to provide atomic-level understanding for applications.		
Course Outcomes	:	At the end of this course, students will be able to:		
	CO1	Understand the behavior of real chemical systems by quantum mechanics		
	CO2	Analyze an <i>observational, macroscopic</i> description of matter statistically		
	CO3	Learn properties of radioactive elements.		
	CO4	Learn about formation and use of detergents.		
	CO5	Apply the knowledge of adsorption and micelle formation.		

Teaching and Examination Scheme

Teachin	ng Scheme	(Contact	Credits	Examination Marks				
	Hours)			Theory Marks		Marks Practical Marks		Total
L	Т	Р	C	SEE	CIA	SEE	CIA	Marks
4	0	0	4	70	30	-	-	100

Legends: L-Lecture; T-Tutorial/Teacher Guided Theory Practice; P – Practical, C – Credit, SEE – Semester End Examination, CIA - Continuous Internal Assessment (It consists of Assignments/Seminars/Presentations/MCQ Tests, etc.

Course Content

Unit No.	Topics	Teaching Hours	Weightage	Mapping With COs
	A) The Basic Principles of Quantum Mechanics:			
1	The Uncertainty Principle, Wave Mechanics, Functions			
	and Operators, The General Formulation of Quantum	15	25%	CO1
	Mechanics (i.e. Postulates) , Expansion Theorems, Eigen			
	functions of Commuting Operators, Hamiltonian			

Faculty of Science Master of Science (M.Sc.) (W. E. F.: 2023-24) Document ID: SUTEFSCM-01

			-	
	Operator.			
	B) The Quantum Mechanics of Some Simple Systems:			
	The Free Particle, The Particle in a Box, Quantum			
	Mechanical Tunneling, The Harmonic Oscillator and			
	Rigid Rotor. The Hydrogen Atom, Hydrogen - like			
	Atoms, Shape of Atomic Orbitals.			
	Statistical thermodynamics:			
2	Concepts of distribution of molecules, thermodynamic			
	probability, permutations and combinations, Boltzmann's	15	25%	CO2
	most probable distribution, partition function-	10	2070	
	translational, vibrational, rotational, electronic nuclear			
	partition functions, problems on types of partition			
	functions.			
	Nuclear chemistry:			
	Nuclear properties-nuclear radius, coulombic and			
3	nuclear potential radius, nuclear spin and angular	15	25%	CO3
	momentum, magnetic moment, nuclear binding energy,	15	2070	000
	nuclear models-shell model, liquid drop model, Fermi			
	gas model, collective model, radioactive decay, nuclear			
	reactions, evaporation, spallation, fragmentation, fission			
	and fusion reactions, accelerators, reaction cross section,			
	use of radioisotopes as tracers.			
	Surface Chemistry:			
4	Physical and chemical adsorption, BET and HJ			
	equations, heat of adsorption, determination of surface	15	25%	CO4
	area of adsorbents, surface tension, Gibb's equation,			CO5
	surface active agents, micellisation, factors affecting the			
	CMC of surfactants, thermodynamics of micellization,			
	critical micellar concentration (cmc), detergency.			

Suggested Distribution of Theory Marks Using Bloom's Taxonomy						
Level	Remembrance	Understanding	Application	Analyse	Evaluate	Create
Weightage	40	20	20	20	-	-

NOTE: This specification table shall be treated as a general guideline for the students and the teachers. The actual distribution of marks in the question paper may vary slightly from above table.

Faculty of Science Master of Science (M.Sc.) (W. E. F.: 2023-24) Document ID: SUTEFSCM-01

Suggested Learning Websites

Sr. No.	Name of Website
1	https://chem.libretexts.org/Bookshelves/Physical_and_Theoretical_Chemistry_Textbook_Map
	s/Statistical_Thermodynamics_(Jeschke)
	https://chem.libretexts.org/Bookshelves/Physical_and_Theoretical_Chemistry_Textbook_Map
2	s/Supplemental_Modules_(Physical_and_Theoretical_Chemistry)/Physical_Properties_of_Matt
	er/States_of_Matter/Properties_of_Liquids/Surface_Tension
	https://chem.libretexts.org/Bookshelves/Physical_and_Theoretical_Chemistry_Textbook_Map
3	s/Book%3A_Quantum_States_of_Atoms_and_Molecules_(Zielinksi_et_al)/02%3A_Foundation
	s_of_Quantum_Mechanics

Reference Books

Sr. No.	Name of Reference Books
1	Quantum Chemistry by Ira N. Levine, Prentice Hall,
2	Introduction to Quantum Chemistry by A. K. Chandra, Tata McGraw Hill
3	Quantum Chemistry, - I . Levine, Fifth edition, Prentice Hall- 19995. Physical Chemistry -
5	Thomas Engel, Philip Reid
4	Quantum Chemistry, By: R. K. Prasad New Age International Publishers (1985).
5	Molecular quantum mechanics, Vol. I & II, P. W. Atkins, Oxford University Press, 1970.
6	Statistical thermodynamics, by T.L.Hill, Addison Wesley, 1060 Chemical thermodynamics,
	by F.T. Wall, W.H.Freeman& Co. 1965
7	Physical Chemistry - P.W. Atkin, ELBS fourth edition.
8	Physical Chemistry – R.A. Alberty, R.I. Bilby, Johy Wiley – 1995
9	Physical Chemistry – G.M. Barrow, Tata Mc – Graw Hill – 1988
10	Textbook of physical chemistry – W.J.Moore
11	Textbook of physical chemistry – Glasstone
12	Advanced physical chemistry – Surdeep Raj
13	Advanced physical chemistry - J.N.Gurtu, A.Gurtu
14	Physical chemistry – S. Castellian
15	Radiochemistry and Nuclear Chemistry 4th Edition by Gregory Choppin, Jan-Olov
	Liljenzin, Jan Rydberg, Christian Ekberg.
16	Principles Of Nuclear Chemistry (Essential Textbooks in Chemistry) Reprint Edition
	by Peter A C Mcpherson.
17	Essentials of Nuclear Chemistry: H. J. Arnikar (Willey Eastern Ltd)
18	Surface chemistry – Adamson
19	Surface chemistry – Osipov